浏览全部资源
扫码关注微信
1.吉林大学 物理学院, 吉林 长春 130012
2.南阳师范学院 物理与电子工程学院, 河南省MXene材料微结构国际联合实验室, 河南 南阳 473061
Published:05 November 2023,
Received:01 September 2023,
Revised:17 September 2023,
移动端阅览
梅开元,霍斯铭,于荣梅等.基于MoO3/ZnO无机电荷产生层的量子点电致发光器件[J].发光学报,2023,44(11):1885-1893.
MEI Kaiyuan,HUO Siming,YU Rongmei,et al.Quantum-dot Light-emitting Diodes Based on MoO3/ZnO Inorganic Charge-generation Layer[J].Chinese Journal of Luminescence,2023,44(11):1885-1893.
梅开元,霍斯铭,于荣梅等.基于MoO3/ZnO无机电荷产生层的量子点电致发光器件[J].发光学报,2023,44(11):1885-1893. DOI: 10.37188/CJL.20230198.
MEI Kaiyuan,HUO Siming,YU Rongmei,et al.Quantum-dot Light-emitting Diodes Based on MoO3/ZnO Inorganic Charge-generation Layer[J].Chinese Journal of Luminescence,2023,44(11):1885-1893. DOI: 10.37188/CJL.20230198.
氧化锌(ZnO)作为一种优异的电子传输材料,广泛应用于高性能量子点电致发光器件(QLED)中。然而,由于ZnO层较高的电荷传输速率,导致器件中过多的电子注入,使得器件内部的载流子不平衡,降低了器件的效率。此外,ZnO的易潮解性质使得其与电极之间的接触容易受到外界环境(水分和氧气)影响,从而影响器件的存储稳定性,这在倒置结构的QLED中尤为明显。为解决上述问题,我们利用MoO
3
/ZnO作为电荷产生层(CGL)来制备倒置结构的QLED。这一结构改善了器件的载流子不平衡问题,使得器件的最大电流效率从12.8 cd/A提升到了15.7 cd/A。此外,CGL无需有电极注入电荷,而是通过电场的作用产生电荷,注入到发光层中,这降低了电极界面对器件性能的影响,从而大大提高了器件的稳定性。
Zinc oxide(ZnO) is commonly used in high-performance quantum dot light-emitting diodes(QLEDs) as electron-transport layers due to its excellent electrical properties. However, due to high electron mobility of the ZnO layer, excessive electrons are injected into the device, which leads to imbalanced charge carriers inside the devices and low efficiency. In addition, the contact between ZnO and the electrode is easily affected by the external environment (water and oxygen), particularly for the inverted QLEDs, which dramatically affects the storage stability of devices. To solve the above problems, we use MoO
3
/ZnO as charge-generation layer (CGL) to prepare inverted QLEDs. This structure reduces carrier imbalance and increases the maximum current efficiency of the device from 12.8 cd/A to 15.7 cd/A. In addition, the influence of cathodes on the device performance is highly reduced in the CGL based QLEDs because the electrons are generated in the CGL, rather than being injected from the cathode. As a result, the storage stability of devices is greatly improved.
电荷产生层电荷储存过冲瞬态电致发光
charge-generation layercharge storageovershoottransient electroluminescence
SHU Y F, LI X, QIN H Y, et al. Quantum dots for display applications [J]. Angew. Chem. Int. Ed., 2020, 59(50): 22312-22323. doi: 10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
黄启章, 孙思琦, 刘铭泽, 等. 面向显示应用的胶体量子点电致发光二极管: 进展与挑战 [J]. 发光学报, 2023, 44(5): 739-758. doi: 10.37188/cjl.20220400http://dx.doi.org/10.37188/cjl.20220400
HUANG Q Z, SUN S Q, LIU M Z, et al. Colloidal quantum dot electroluminescent diodes for display applications: progress and challenges [J]. Chin. J. Lumin., 2023, 44(5): 739-758. (in Chinese). doi: 10.37188/cjl.20220400http://dx.doi.org/10.37188/cjl.20220400
TAO C L, MA J L, WEI C T, et al. Scalable synthesis of high-quality core/shell quantum dots with suppressed blinking [J]. Adv. Opt. Mater., 2023, 11(17): 2300533. doi: 10.1002/adom.202300533http://dx.doi.org/10.1002/adom.202300533
CHEN Z N, LI H T, YUAN C X, et al. Color revolution: prospects and challenges of quantum-dot light-emitting diode display technologies [J]. Small Methods, 2023, doi: 10.1002/smtd.202300359http://dx.doi.org/10.1002/smtd.202300359.
WEI C T, SU W M, LI J T, et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes [J]. Adv. Mater., 2022, 34(10): 2107798. doi: 10.1002/adma.202107798http://dx.doi.org/10.1002/adma.202107798
PAN J Y, WEI C T, WANG L X, et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment [J]. Nanoscale, 2018, 10(2): 592-602. doi: 10.1039/c7nr06248fhttp://dx.doi.org/10.1039/c7nr06248f
QIAN L, ZHENG Y, XUE J G, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures [J]. Nat. Photon., 2011, 5(9): 543-548. doi: 10.1038/nphoton.2011.171http://dx.doi.org/10.1038/nphoton.2011.171
ZHANG H, CHEN S M, SUN X W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21% [J]. ACS Nano, 2018, 12(1): 697-704. doi: 10.1021/acsnano.7b07867http://dx.doi.org/10.1021/acsnano.7b07867
KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode [J]. Nature, 2020, 586(7829): 385-389. doi: 10.1038/s41586-020-2791-xhttp://dx.doi.org/10.1038/s41586-020-2791-x
SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nat. Photon., 2019, 13(3): 192-197. doi: 10.1038/s41566-019-0364-zhttp://dx.doi.org/10.1038/s41566-019-0364-z
GAO Y, LI B, LIU X N, et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting [J]. Nat. Nanotechnol., 2023, doi: 10.1038/s41565-023-01441-zhttp://dx.doi.org/10.1038/s41565-023-01441-z.
LIU Y, WEI S, WANG G, et al. Quantum-sized SnO2 nanoparticles with upshifted conduction band: a promising electron transportation material for quantum dot light-emitting diodes [J]. Langmuir, 2020, 36(23): 6605-6609. doi: 10.1021/acs.langmuir.0c00107http://dx.doi.org/10.1021/acs.langmuir.0c00107
CHEN Z N, CHEN S M. Efficient and stable quantum-dot light-emitting diodes enabled by tin oxide multifunctional electron transport layer [J]. Adv. Opt. Mater., 2022, 10(5): 2102404. doi: 10.1002/adom.202102404http://dx.doi.org/10.1002/adom.202102404
QASIM K, CHEN J, LI Z, et al. Highly-improved performance of TiO2 nanocrystal based quantum dot light emitting diodes [J]. RSC Adv., 2013, 3(30): 12104-12108. doi: 10.1039/c3ra42055hhttp://dx.doi.org/10.1039/c3ra42055h
WANG Y C, ZHU X X, XUE X L, et al. Electron transport mechanism in colloidal SnO2 nanoparticle films and its implications for quantum-dot light-emitting diodes [J]. J. Phys. D: Appl. Phys., 2022, 55(37): 374004. doi: 10.1088/1361-6463/ac7c9fhttp://dx.doi.org/10.1088/1361-6463/ac7c9f
ZHANG D D, LIU Y H, ZHU L Q. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes [J]. Iscience, 2022, 25(10): 105111. doi: 10.1016/j.isci.2022.105111http://dx.doi.org/10.1016/j.isci.2022.105111
DING K, CHEN H T, FAN L W, et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(23): 20231-20238. doi: 10.1021/acsami.7b04662http://dx.doi.org/10.1021/acsami.7b04662
JEON W S, PARK J S, LI L, et al. High current conduction with high mobility by non-radiative charge recombination interfaces in organic semiconductor devices [J]. Org. Electron., 2012, 13(6): 939-944. doi: 10.1016/j.orgel.2012.02.008http://dx.doi.org/10.1016/j.orgel.2012.02.008
WANG R J, WANG T, KANG Z H, et al. Efficient flexible quantum-dot light-emitting diodes with unipolar charge injection [J]. Opt. Express, 2022, 30(9): 15747-15756. doi: 10.1364/oe.456449http://dx.doi.org/10.1364/oe.456449
MURASE S, YANG Y, Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method [J]. Adv. Mater., 2012, 24(18): 2459-2462. doi: 10.1002/adma.201104771http://dx.doi.org/10.1002/adma.201104771
JASIENIAK J J, SEIFTER J, JO J, et al. A solution-processed MoOx anode interlayer for use within organic photovoltaic devices [J]. Adv. Funct. Mater., 2012, 22(12): 2594-2605. doi: 10.1002/adfm.201102622http://dx.doi.org/10.1002/adfm.201102622
战胜, 刘佳田, 张汉壮, 等. 基于无机电荷产生层的量子点电致发光器件 [J]. 发光学报, 2022, 43(10): 1469-1477. doi: 10.37188/CJL.20220240http://dx.doi.org/10.37188/CJL.20220240
ZHAN S, LIU J T, ZHANG H Z, et al. Quantum-dot light-emitting diodes based on inorganic charge-generation layer [J]. Chin. J. Lumin., 2022, 43(10): 1469-1477. (in Chinese). doi: 10.37188/CJL.20220240http://dx.doi.org/10.37188/CJL.20220240
MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photon., 2013, 7(5): 407-412. doi: 10.1038/nphoton.2013.70http://dx.doi.org/10.1038/nphoton.2013.70
GREINER M T, CHAI L, HELANDER M G, et al. Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies [J]. Adv. Funct. Mater., 2012, 22(21): 4557-4568. doi: 10.1002/adfm.201200615http://dx.doi.org/10.1002/adfm.201200615
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99. doi: 10.1038/nature13829http://dx.doi.org/10.1038/nature13829
EMPEDOCLES S A, BAWENDI M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots [J]. Science, 1997, 278(5346): 2114-2117. doi: 10.1126/science.278.5346.2114http://dx.doi.org/10.1126/science.278.5346.2114
YU P L, ZHU X X, BAI J L, et al. Calibrating the hole mobility measurements implemented by transient electroluminescence technology [J]. ACS Appl. Mater. Interfaces, 2022, 14(46): 52253-52261. doi: 10.1021/acsami.2c14507http://dx.doi.org/10.1021/acsami.2c14507
HE T, YAO J N. Photochromism of molybdenum oxide [J]. J. Photochem. Photobiol. C, 2003, 4(2): 125-143. doi: 10.1016/s1389-5567(03)00025-xhttp://dx.doi.org/10.1016/s1389-5567(03)00025-x
SAJI V S, LEE C W. Molybdenum, molybdenum oxides, and their electrochemistry [J]. ChemSusChem, 2012, 5(7): 1146-1161. doi: 10.1002/cssc.201100660http://dx.doi.org/10.1002/cssc.201100660
DE CASTRO I A, DATTA R S, OU J Z, et al. Molybdenum oxides-from fundamentals to functionality [J]. Adv. Mater., 2017, 29(40): 1701619. doi: 10.1002/adma.201701619http://dx.doi.org/10.1002/adma.201701619
0
Views
492
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution