浏览全部资源
扫码关注微信
1.兰州大学 材料与能源学院, 甘肃 兰州 730000
2.包头稀土研究院, 内蒙古 包头 014030
Published:05 October 2022,
Received:19 May 2022,
Revised:05 June 2022,
移动端阅览
王亚杰,王忠志,王育华.新型黄色长余辉材料γ‑SrGa2O4∶Bi3+的制备及性能[J].发光学报,2022,43(10):1542-155110.37188/CJL.20220197.
WANG Ya-jie,WANG Zhong-zhi,WANG Yu-hua.Preparation and Properties of A Novel Yellow Long Persistent Luminescence Material γ-SrGa2O4∶Bi3+[J].Chinese Journal of Luminescence,2022,43(10):1542-155110.37188/CJL.20220197.
王亚杰,王忠志,王育华.新型黄色长余辉材料γ‑SrGa2O4∶Bi3+的制备及性能[J].发光学报,2022,43(10):1542-155110.37188/CJL.20220197. DOI:
WANG Ya-jie,WANG Zhong-zhi,WANG Yu-hua.Preparation and Properties of A Novel Yellow Long Persistent Luminescence Material γ-SrGa2O4∶Bi3+[J].Chinese Journal of Luminescence,2022,43(10):1542-155110.37188/CJL.20220197. DOI:
长余辉材料中的深陷阱具有优异的能量存储和释放性能,因此在光学信息存储方面有很大应用优势。本文采用高温固相法合成了新型黄色长余辉材料
γ
⁃SrGa
2
O
4
∶Bi
3+
,其发射光谱是以565 nm为中心、范围为400~800 nm的宽带发射,该发射归属于Bi
3+
离子的
3
P
1
→
1
S
0
跃迁。在紫外灯照射后,观察到
γ
⁃SrGa
2
O
4
∶Bi
3+
样品明亮的黄色长余辉发光。通过热释光谱分析可知
γ
⁃SrGa
2
O
4
∶Bi
3+
中主要有三种陷阱,其深度分别为0.678,0.838,0.978 eV。深度为0.678 eV的浅陷阱是该材料产生长余辉现象的主要原因,而深度为0.838 eV的深陷阱对应的热释峰强度在12 h后仅下降18.6%,这说明深陷阱中电子释放缓慢。基于材料的深陷阱性能,设计了字母图案并对其进行光学信息存储实验,结果表明该材料在信息存储方面有潜在应用前景。
Deep traps in long persistent luminescence(LPL) materials have excellent energy storage and release properties, and thus have great application advantages in optical information storage. In this paper, a novel yellow long afterglow material
γ
-SrGa
2
O
4
∶Bi
3+
was synthesized by high-temperature solid-phase method, and its emission spectrum is a broadband emission centered at 565 nm in the range of 400-800 nm, which is attributed to the
3
P
1
→
1
S
0
transitions of Bi
3+
. The bright yellow LPL of the
γ
-SrGa
2
O
4
∶Bi
3+
sample was observed after UV lamp irradiation. The analysis of the thermoluminescence(TL) curve indicates that there are three main traps in
γ
-SrGa
2
O
4
∶Bi
3+
with the depths of 0.678, 0.838, 0.978 eV, respectively. The shallow trap with a depth of 0.678 eV is the main reason for the LPL phenomenon of the material, while the intensity of the TL peak corresponding to the deep trap with a depth of 0.838 eV only decreases by 18.6% after 12 h, which indicates the slow electron release in the deep trap. Based on the deep trap properties of the material, the letter patterns were designed and experimented for optical information storage, and the results showed that the material has potential applications in information storage.
信息存储γ-SrGa2O4∶Bi3+黄色长余辉陷阱
information storageγ-SrGa2O4∶Bi3+yellow long persistent luminescencetrap
罗昔贤, 于晶杰, 林广旭, 等. 长余辉发光材料研究进展 [J]. 发光学报, 2002, 23(5): 497-502. doi: 10.3321/j.issn:1000-7032.2002.05.017http://dx.doi.org/10.3321/j.issn:1000-7032.2002.05.017
LUO X X, YU J J, LIN G X, et al. Development of long after glow phosphors [J]. Chin. J. Lumin.., 2002, 23(5): 497-502. (in Chinese). doi: 10.3321/j.issn:1000-7032.2002.05.017http://dx.doi.org/10.3321/j.issn:1000-7032.2002.05.017
LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors-from fundamentals to applications [J]. Chem. Soc. Rev., 2016, 45(8): 2090-2136. doi: 10.1039/c5cs00582ehttp://dx.doi.org/10.1039/c5cs00582e
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective [J]. J. Lumin., 2019, 205: 581-620. doi: 10.1016/j.jlumin.2018.09.047http://dx.doi.org/10.1016/j.jlumin.2018.09.047
ZHUANG Y X, WANG L, LV Y, et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials [J]. Adv. Funct. Mater., 2018, 28(8): 1705769-1-9. doi: 10.1002/adfm.201705769http://dx.doi.org/10.1002/adfm.201705769
LI H H, WANG Y H. Photocatalysis enhancement of CaAl2O4∶Eu2+, Nd3+@TiO2 composite powders [J]. Res. Chem. Intermed., 2010, 36(1): 51-59. doi: 10.1007/s11164-010-0113-xhttp://dx.doi.org/10.1007/s11164-010-0113-x
刘峰, 杨峰, 杨慧, 等. 红外波段的长余辉发光 [J]. 发光学报, 2018, 39(11): 1487-1495. doi: 10.3788/fgxb20183911.1487http://dx.doi.org/10.3788/fgxb20183911.1487
LIU F, YANG F, YANG H, et al. Long persistent luminescence in the infrared [J]. Chin. J. Lumin., 2018, 39(11): 1487-1495. (in Chinese). doi: 10.3788/fgxb20183911.1487http://dx.doi.org/10.3788/fgxb20183911.1487
SUN X Y, ZHANG J H, ZHANG X, et al. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5∶Eu2+ and Sr3SiO5∶Eu2+, Dy3+ phosphors [J]. J. Phys. D Appl. Phys., 2008, 41(19): 195414-1-4.
庄逸熙, 陈敦榕, 解荣军. 面向光学信息存储应用的深陷阱长余辉发光材料 [J]. 激光与光电子学进展, 2021, 58(15): 1516001-1-24. doi: 10.3788/lop202158.1516001http://dx.doi.org/10.3788/lop202158.1516001
ZHUANG Y X, CHEN D R, XIE R J. Persistent luminescent materials with deep traps for optical information storage [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516001-1-24. (in Chinese). doi: 10.3788/lop202158.1516001http://dx.doi.org/10.3788/lop202158.1516001
JIA D D. Enhancement of long-persistence by Ce co-doping in CaS∶Eu2+, Tm3+ red phosphor [J]. J. Electrochem. Soc., 2006, 153(11): H198-H201. doi: 10.1149/1.2337087http://dx.doi.org/10.1149/1.2337087
VAN DEN EECKHOUT K, SMET P F, POELMAN D. Luminescent afterglow behavior in the M2Si5N8∶Eu family (M = Ca, Sr, Ba) [J]. Materials, 2011, 4(6): 980-990. doi: 10.3390/ma4060980http://dx.doi.org/10.3390/ma4060980
KOJIMA Y, TAKAHASHI A, UMEGAKI T. Synthesis of orange-red-emitting Eu2+, Pr3+ codoped SrS long afterglow phosphor [J]. J. Lumin., 2014, 146: 42-45. doi: 10.1016/j.jlumin.2013.08.063http://dx.doi.org/10.1016/j.jlumin.2013.08.063
LI H M, CAI J Z, PANG R, et al. A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa2O4∶Bi3+ [J]. J. Mater. Chem. C, 2019, 7(42): 13088-13096. doi: 10.1039/c9tc04963khttp://dx.doi.org/10.1039/c9tc04963k
WANG S B, CHEN W B, ZHOU D C, et al. Long persistent properties of CaGa2O4∶Bi3+ at different ambient temperature [J]. J. Am. Ceram. Soc., 2017, 100(8): 3514-3521. doi: 10.1111/jace.14875http://dx.doi.org/10.1111/jace.14875
ZHANG Y, CHEN D X, WANG W L, et al. Long-lasting ultraviolet-a persistent luminescence and photostimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor [J]. Inorg. Chem. Front., 2020, 7(17): 3063-3071. doi: 10.1039/d0qi00578ahttp://dx.doi.org/10.1039/d0qi00578a
SHI J P, SUN X, ZHENG S H, et al. Super-long persistent luminescence in the ultraviolet a region from a Bi3+-doped LiYGeO4 phosphor [J]. Adv. Opt. Mater., 2019, 7(19): 1900526-1-6. doi: 10.1002/adom.201900526http://dx.doi.org/10.1002/adom.201900526
ZHOU Z H, WANG X, YI X D, et al. Rechargeable and sunlight-activated Sr3Y2Ge3O12∶Bi3+ UV-visible-NIR persistent luminescence material for night-vision signage and optical information storage [J]. Chem. Eng. J., 2021, 421: 127820-1-11. doi: 10.1016/j.cej.2020.127820http://dx.doi.org/10.1016/j.cej.2020.127820
YANG S H, TU H F. Novel SrGa2O4 phosphor for tunable blue-white luminescence [J]. J. Electrochem. Soc., 2005, 152(1): H1-H5. doi: 10.1149/1.1825914http://dx.doi.org/10.1149/1.1825914
LAI J A, QIU J B, WANG Q, et al. Disentangling site occupancy, cation regulation, and oxidation state regulation of the broadband near infrared emission in a chromium-doped SrGa4O7 phosphor [J]. Inorg. Chem. Front., 2020, 7(12): 2313-2321. doi: 10.1039/d0qi00332hhttp://dx.doi.org/10.1039/d0qi00332h
ZHOU Y P, SETO T, KANG Z Y, et al. Design of highly efficient deep-red emission in the Mn4+ doped new-type structure CaMgAl10O17 for plant growth LED light [J]. Dalton Trans., 2021, 50(34): 11793-11803. doi: 10.1039/d1dt02088ahttp://dx.doi.org/10.1039/d1dt02088a
KANG F W, YANG X B, PENG M Y, et al. Red photoluminescence from Bi3+ and the influence of the oxygen-vacancy perturbation in ScVO4: a combined experimental and theoretical study [J]. J. Phys. Chem. C, 2014, 118(14): 7515-7522. doi: 10.1021/jp4081965http://dx.doi.org/10.1021/jp4081965
JU H D, DENG W P, WANG B L, et al. The structure and luminescence properties of green Ca3Al2O6∶Bi3+ phosphors [J]. J. Alloys Compd., 2012, 516: 153-156. doi: 10.1016/j.jallcom.2011.12.011http://dx.doi.org/10.1016/j.jallcom.2011.12.011
ZHANG Q, WANG X C, DING X, et al. A broad band yellow-emitting Sr8CaBi(PO4)7∶Eu2+ phosphor for n-UV pumped white light emitting devices [J]. Dyes Pigm., 2018, 149: 268-275. doi: 10.1016/j.dyepig.2017.10.004http://dx.doi.org/10.1016/j.dyepig.2017.10.004
LI H M, PANG R, LUO Y Q, et al. Commendable Pr3+-activated Ba2Ga2GeO7 phosphor with high-brightness white long-persistent luminescence [J]. J. Mater. Chem. C, 2019, 7(22): 6698-6705. doi: 10.1039/c9tc01735fhttp://dx.doi.org/10.1039/c9tc01735f
ZHOU X F, GENG W Y, GUO H J, et al. K4CaGe3O9∶Mn2+, Yb3+: a novel orange-emitting long persistent luminescent phosphor with a special nanostructure [J]. J. Mater. Chem. C, 2018, 6(27): 7353-7360. doi: 10.1039/c8tc01845fhttp://dx.doi.org/10.1039/c8tc01845f
GUO H J, WANG Y H, CHEN W B, et al. Ca6BaP4O17∶Eu2+, Gd3+: a yellow emitting long-lasting phosphor with high brightness and long afterglow duration [J]. New J. Chem., 2016, 40(1): 613-618. doi: 10.1039/c5nj02575chttp://dx.doi.org/10.1039/c5nj02575c
LIANG Y J, LIU F, CHEN Y F, et al. New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared [J]. Light Sci. Appl., 2016, 5(7): e16124-1-6. doi: 10.1038/lsa.2016.124http://dx.doi.org/10.1038/lsa.2016.124
SUN W Z, PANG R, LI H M, et al. Investigation of a novel color tunable long afterglow phosphor KGaGeO4∶Bi3+: luminescence properties and mechanism [J]. J. Mater. Chem. C, 2017, 5(6): 1346-1355. doi: 10.1039/c6tc04012hhttp://dx.doi.org/10.1039/c6tc04012h
0
Views
256
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution