浏览全部资源
扫码关注微信
1.长春理工大学 高功率半导体国家重点实验室, 吉林 长春 130022
2.长春理工大学 重庆研究院, 重庆 401135
Published:05 June 2022,
Received:01 March 2022,
Revised:20 March 2022,
移动端阅览
刘伟超,王海珠,王嘉宾等.In0.49Ga0.51P材料有序度对发光特性的影响[J].发光学报,2022,43(06):862-868.
LIU Wei-chao,WANG Hai-zhu,WANG Jia-bin,et al.Effect of Orderliness of In0.49Ga0.51P Material on Luminescence Characteristics[J].Chinese Journal of Luminescence,2022,43(06):862-868.
刘伟超,王海珠,王嘉宾等.In0.49Ga0.51P材料有序度对发光特性的影响[J].发光学报,2022,43(06):862-868. DOI: 10.37188/CJL.20220059.
LIU Wei-chao,WANG Hai-zhu,WANG Jia-bin,et al.Effect of Orderliness of In0.49Ga0.51P Material on Luminescence Characteristics[J].Chinese Journal of Luminescence,2022,43(06):862-868. DOI: 10.37188/CJL.20220059.
In
0.49
Ga
0.51
P材料因与GaAs晶格匹配且具有较宽的能量带隙,在GaAs基短波长激光器和无铝激光器等研究方向上受到了广泛关注。不同领域的应用对In
0.49
Ga
0.51
P材料的性能提出了不同的需求,导致In
0.49
Ga
0.51
P材料的有序度发生变化,进而导致其发光特性发生改变。本文利用金属有机化学气相沉积(MOCVD)技术,在半绝缘的GaAs衬底上开展In
0.49
Ga
0.51
P材料有序度对其发光特性影响的研究。通过改变硅烷(SiH
4
)和二乙基锌(DEZn)掺杂剂的掺杂流量和Ⅴ/Ⅲ比的方法来改变In
0.49
Ga
0.51
P材料的有序度。室温光致发光测试(PL)和低温PL测试结果表明,两种掺杂剂掺杂流量增加都会导致In
0.49
Ga
0.51
P有序度降低,从而使InGaP的发光波长蓝移。此外,Ⅴ/Ⅲ比增加会导致In
0.49
Ga
0.51
P有序度增加,使样品的发光波长红移。
The In
0.49
Ga
0.51
P material, as a semiconductor material with broad energy bandgap and matching lattice parameters with GaAs, has obtained widespread attention and application, such as GaAs-based short-wavelength lasers and aluminum-free lasers. Aiming on its applications in different fields, different demands are proposed on the properties of In
0.49
Ga
0.51
P materials, which lead to changes in the orderliness of In
0.49
Ga
0.51
P, and then, its luminescence properties. In this paper, the luminescence-characteristics effect of the orderliness of In
0.49
Ga
0.51
P material on semi-insulated GaAs substrate was studied using metal organic chemical vapour deposition(MOCVD) technology. The doping flux of SiH
4
and DEZn and the change of Ⅴ/Ⅲ ratio can affect the ordering of In
0.49
Ga
0.51
P material. The results of room temperature PL test and low temperature PL test show that the increase of the doping flux of the two dopants can lead to the decrease of the order degree of In
0.49
Ga
0.51
P, thus causing the blue-shift of the emission wavelength of InGaP. In addition, the increase of Ⅴ/Ⅲ ratio leads to the increase of the orderess of In
0.49
Ga
0.51
P, which leads to the red shift of the luminescence wavelength of the sample.
金属有机化学气相沉积铟镓磷/镓砷光致发光故意掺杂
metal organic chemical vapour deposition(MOCVD)InGaP/GaAsphotoluminescenceintentional doping
陈仲谋,张博. 基于InGaP/GaAs HBT工艺超宽带高线性度单片放大器 [J]. 电子元件与材料, 2022,41(1): 83-88.
CHEN Z M,ZHANG B. Ultra-wideband high linearity monolithic amplifier based on InGaP/GaAs HBT process [J]. Electr. Comp. Mater., 2022,41(1):83-88. (in Chinese)
赵斌. 金属衬底InGaP/GaAs双结薄膜太阳能电池的制备与特性 [D]. 北京:中国科学院物理研究所, 2019.
ZHAO B. Fabrication and Characteristics of INGAP/Gaas Double Iunctionthin Film Solar Cells on A Metallic Substrate [D]. Beijing:Institute of Physics,Chinese Academy of Sciences, 2019. (in Chinese)
ZHANG G,NÄPPI J,VÄNTTINEN K,et al. Low threshold current InGaAs/GaAs/GaInP lasers grown by gas-source molecular beam epitaxy [J]. Appl. Phys. Lett., 1992,61(1):96-98. doi: 10.1063/1.107625http://dx.doi.org/10.1063/1.107625
SLIPCHENKO S O,SOBOLEVA O S,PIKHTIN N A. Unipolar quantum well InGaAs/AlGaAs heterostructures with impact ionization for efficient low-voltage light-emitting devices [J]. IEEE Trans. Electron. Dev., 2021,68(6):2823-2828. doi: 10.1109/ted.2021.3075170http://dx.doi.org/10.1109/ted.2021.3075170
ZHANG X T,YI R X,GAGRANI N,et al. Ultralow threshold,single-mode InGaAs/GaAs multi-quantum disk nanowire lasers [J]. ACS Nano, 2021,15(5):9126-9133. doi: 10.1021/acsnano.1c02425http://dx.doi.org/10.1021/acsnano.1c02425
常奕栋,王贞福,张晓颖,等. 808 nm半导体激光芯片波导优化与效率特性分析 [J]. 发光学报, 2021,42(7):1040-1048. doi: 10.37188/CJL.20210108http://dx.doi.org/10.37188/CJL.20210108
CHANG Y D,WANG Z F,ZHANG X Y,et al. Waveguide optimization and efficiency characteristic analysis of 808 nm laser diodes [J]. Chin. J. Lumin., 2021,42(7):1040-1048. (in Chinese). doi: 10.37188/CJL.20210108http://dx.doi.org/10.37188/CJL.20210108
付莹莹. 808 nm无铝GaAsP量子阱大功率半导体激光器的制备与研究 [D]. 北京:北京工业大学, 2016.
FU Y Y. Fabrication and Research of 808 nm Al⁃free GaAsP Quantum Well High Power Semiconductor Lasers [D]. Beijing:Beijing University of Technology, 2016. (in Chinese)
刘翠翠,林楠,马骁宇,等. 带有非吸收窗口的高性能InGaAs/AlGaAs量子阱激光二极管 [J]. 发光学报, 2022,43(1):110-118. doi: 10.37188/CJL.20210306http://dx.doi.org/10.37188/CJL.20210306
LIU C C,LIN N,MA X Y,et al. High performance InGaAs/AlGaAs quantum well semiconductor laser diode with non-absorption window [J]. Chin. J. Lumin., 2022,43(1):110-118. (in Chinese). doi: 10.37188/CJL.20210306http://dx.doi.org/10.37188/CJL.20210306
宋悦,宁永强,秦莉,等. 大功率半导体激光器抗腔面灾变性光学损伤技术综述 [J]. 半导体光电, 2020,41(5):618-626. doi: 10.16818/j.issn1001-5868.2020.05.003http://dx.doi.org/10.16818/j.issn1001-5868.2020.05.003
SONG Y,NING Y Q,QIN L,et al. Review on the methods of preventing catastrophic optical mirror damage in high-power diode lasers [J]. Semicond. Optoelectron., 2020,41(5):618-626. (in Chinese). doi: 10.16818/j.issn1001-5868.2020.05.003http://dx.doi.org/10.16818/j.issn1001-5868.2020.05.003
刘翠翠,林楠,熊聪,等. Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究 [J]. 中国光学, 2020,13(1):203-216.
LIU C C,LIN N,XIONG C,et al. Diffusion-induced InGaAs/AlGaAs quantum well hybridization by Si impurities [J]. Chin. Opt., 2020,13(1):203-216. (in English)
汤瑜,曹春芳,赵旭熠,等. InGaAs/GaAs/InGaP量子阱激光器的激光单模特性研究 [J]. 激光与光电子学进展, 2019,56(13):131402-1-5. doi: 10.3788/lop56.131402http://dx.doi.org/10.3788/lop56.131402
TANG Y,CAO C F,ZHAO X Y,et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers [J]. Laser Optoelectron. Prog., 2019,56(13):131402-1-5. (in Chinese). doi: 10.3788/lop56.131402http://dx.doi.org/10.3788/lop56.131402
李金友,王海龙,杨锦,等. InGaAs/GaAs/InGaP量子阱激光器的温度电压特性 [J]. 发光学报, 2020,41(8):971-976. doi: 10.37188/fgxb20204108.0971http://dx.doi.org/10.37188/fgxb20204108.0971
LI J Y,WANG H L,YANG J,et al. Voltage-temperature characteristics of InGaAs/GaAs/InGaP quantum well laser [J]. Chin. J. Lumin., 2020,41(8):971-976. (in Chinese). doi: 10.37188/fgxb20204108.0971http://dx.doi.org/10.37188/fgxb20204108.0971
ZMUDZINSKI C,BOTEZ D,MAWST L I,et al. Three-core arrow-type diode laser:novel high-power,single-mode device,and effective master oscillator for flared antiguided MOPA's [J]. IEEE J. Sel. Top. Quantum. Electron.,1995,1(2):129-137. doi: 10.1109/2944.401190http://dx.doi.org/10.1109/2944.401190
韩智明,缪国庆,曾玉刚,等. 两步生长法生长的InxGa1-xAs/GaAs材料及性质 [J]. 发光学报, 2015,36(3):288-282. doi: 10.3788/fgxb20153603.0288http://dx.doi.org/10.3788/fgxb20153603.0288
HAN Z M,MIAO G Q,ZENG Y G,et al. Properties of InGaAs deposited on GaAs substrate with two-step growth [J]. Chin. J. Lumin., 2015,36(3):288-292. (in Chinese). doi: 10.3788/fgxb20153603.0288http://dx.doi.org/10.3788/fgxb20153603.0288
董海亮. InGaAs/GaAsP量子阱界面结构及其激光器件性能研究 [D]. 太原:太原理工大学, 2016.
DONG H L. Interfacial Structure of InGaAs/GaAsP Quantum Well and Performance of Laser Device [D]. Taiyuan:Taiyuan University of Technology, 2016. (in Chinese)
王旭,王海珠,张彬,等. InGaAs/GaAsP应变补偿多量子阱MOCVD生长 [J]. 发光学报, 2021,42(4):448-454. doi: 10.37188/CJL.20200379http://dx.doi.org/10.37188/CJL.20200379
WANG X,WANG H Z,ZHANG B,et al. Growth of InGaAs/GaAsP strain-compensated multiple quantum wells via MOCVD technology [J]. Chin. J. Lumin., 2021,42(4):448-454. (in Chinese). doi: 10.37188/CJL.20200379http://dx.doi.org/10.37188/CJL.20200379
缪国庆,朱景义,李玉琴,等. Ga0.51In0.49P的MOCVD生长特性研究 [J]. 发光学报,1996,17(1):43-46. doi: 10.3321/j.issn:1000-7032.1996.01.009http://dx.doi.org/10.3321/j.issn:1000-7032.1996.01.009
MIAO G Q,ZHU J Y,LI Y Q,et al. The growth characteristic study of Ga0.51In0.49P by MOCVD [J]. Chin. J. Lumin.,1996,17(1):43-46. (in Chinese). doi: 10.3321/j.issn:1000-7032.1996.01.009http://dx.doi.org/10.3321/j.issn:1000-7032.1996.01.009
FUOSS P,KISKER D,KUECH T,et al. Common Themes and Mechanisms of Epitaxial Growth [M]. San Francisco,CA:Materials Research Society, 1993.
SU L C,HO I H,KOBAYASHI N,et al. Order/disorder heterostructure in Ga0.5In0.5P with ΔEg=160 meV [J]. J. Cryst. Growth, 1994,145(1-4):140-146. doi: 10.1016/0022-0248(94)91041-3http://dx.doi.org/10.1016/0022-0248(94)91041-3
CHUN Y S,MURATA H,HSU T C,et al. Effects of Ⅴ/Ⅲ ratio on ordering in GaInP:atomic scale mechanisms [J]. J. Appl. Phys., 1996,79(9):6900-6906. doi: 10.1063/1.361513http://dx.doi.org/10.1063/1.361513
DEPPE D G,HOLONYAK N JR,HSIEH K C,et al. Layer interdiffusion in Se-doped AlxGa1-xAs-GaAs superlattices [J]. J. Appl. Phys., 1987,51(8):581-583. doi: 10.1063/1.98354http://dx.doi.org/10.1063/1.98354
STRINGFELLOW G B. Effects of the Surface on CuPt Ordering During OMVPE Growth [M]. New York:Springer, 2002. doi: 10.1007/978-1-4615-0631-7_3http://dx.doi.org/10.1007/978-1-4615-0631-7_3
STRINGFELLOW G B,LEE R T,FETZER C M,et al. Surfactant effects of dopants on ordering in GaInP [J]. J. Electron. Mater., 2000,29(1):134-139. doi: 10.1007/s11664-000-0108-2http://dx.doi.org/10.1007/s11664-000-0108-2
MURATA H,HO I H,SU L C,et al. Surface photoabsorption study of the effects of growth temperature and Ⅴ/Ⅲ ratio on ordering in GaInP [J]. J. Appl. Phys.,1996,79(9):6895-6899. doi: 10.1063/1.361430http://dx.doi.org/10.1063/1.361430
YU S,TAN T Y,GÖESELE U. Diffusion mechanism of zinc and beryllium in gallium arsenide [J]. J. Appl. Phys.,1991,69(6):3547-3565. doi: 10.1063/1.348497http://dx.doi.org/10.1063/1.348497
LEE S H,FETZER C M,STRINGFELLOW G B,et al. Step structure and ordering in Zn-doped GaInP [J]. J. Appl. Phys., 1999,86(4):1982-1987. doi: 10.1063/1.370997http://dx.doi.org/10.1063/1.370997
何志芳. 掺杂对GaAs/AlGaAs材料体系电学性能的影响研究 [D]. 长春:长春理工大学, 2020.
HE Z F. Study of the Electrical Properties of GaAs/AlGaAs Materials via Element Doping [D]. Changchun:Changchun University of Science and Technology, 2020. (in Chinese)
吴静,尚勋忠. InGaP/GaAs外延材料合金有序度的表征 [J]. 材料导报, 2006(1):20-22.
WU J,SHANG X Z. Characterization of alloy orderliness in InGaP/GaAs epitaxial materials [J]. Mater. Rep., 2006(1):20-22. (in Chinese)
0
Views
140
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution