浏览全部资源
扫码关注微信
北京邮电大学 理学院, 北京 100876
[ "宋迪(1976-),女,辽宁铁岭人,博士,副研究员,2009年于中国科学院化学研究所获得博士学位,主要从事激发态动力学的研究。" ]
[ "夏安东(1964-),男,江苏兴化人,博士,教授,博士生导师,1993年于中国科学院感光化学研究所(现理化技术研究所)获得博士学位,主要从事凝聚相复杂体系化学动力学的超快光谱仪器技术的发展和复杂体系的激发态过程的研究。 E-mail: andongxia@bupt.edu.cn" ]
纸质出版日期:2023-07-05,
收稿日期:2023-04-06,
修回日期:2023-04-23,
扫 描 看 全 文
宋迪,郑天睿,匡卓然等.溶剂化对有机给、受体分子热激活延迟荧光的影响及调控[J].发光学报,2023,44(07):1239-1250.
SONG Di,ZHENG Tianrui,KUANG Zhuoran,et al.Effect of Solvation on Thermally Activated Delayed Fluorescence Within Electron Donor/Acceptor Chromophores[J].Chinese Journal of Luminescence,2023,44(07):1239-1250.
宋迪,郑天睿,匡卓然等.溶剂化对有机给、受体分子热激活延迟荧光的影响及调控[J].发光学报,2023,44(07):1239-1250. DOI: 10.37188/CJL.20230079.
SONG Di,ZHENG Tianrui,KUANG Zhuoran,et al.Effect of Solvation on Thermally Activated Delayed Fluorescence Within Electron Donor/Acceptor Chromophores[J].Chinese Journal of Luminescence,2023,44(07):1239-1250. DOI: 10.37188/CJL.20230079.
具有热激活延迟荧光(Thermally activated delayed fluorescence,TADF)特性的有机给、受体(Donor⁃acceptor,D⁃A)分子体系通过反向系间窜越捕获三重态激子,可以将内量子效率的理论上限提高到100%,因而受到极大关注。通常,具有分子内电荷转移特性的D⁃A体系可以通过构建扭曲的分子构象来减小单、三重态之间的能差Δ
E
S⁃T
,以确保反向系间窜越快速发生。当分子被激发后,若激发态构象中D⁃A的二面角更接近90˚时,Δ
E
S⁃T
会更小,延迟荧光也会增强。然而,快速的溶剂化过程常常会影响激发态构象、分子内电荷转移过程、延迟荧光发射,这使得研究TADF分子发光过程更富有挑战。本文综述了本课题组近期在溶剂化对D⁃A体系延迟荧光的影响及调控方面所取得的初步进展。结果显示,强极性溶剂会导致非辐射弛豫增加,不利于TADF发射;改变溶剂粘度会影响激发态构象弛豫,从而可以实现对TADF的增强或减弱的调控。这些结果有助于理解溶剂化效应与构象弛豫、TADF之间的关系,为TADF分子的设计与合成提供指导。
Thermally activated delayed fluorescence (TADF) materials with distinct electron donor and acceptor(D-A) segments can achieve theoretically 100% internal quantum efficiencies
via
the reverse intersystem crossing(RISC) process, thus receiving tremendous attention in lighting, display, and biomedical fields. Generally, D-A systems with intramolecular charge transfer(ICT) characteristics minimize singlet-triplet energy gap(Δ
E
S-T
) by having molecular conformations twisted, so that the RISC process takes place rapidly. Once the dihedral angle of D-A segments in the excited molecular conformation is further twisted, approaching 90°, Δ
E
S-T
will be smaller and the TADF characteristics will be also enhanced. However, conformational changes of excited states, ICT process and TADF emission are often influenced by solvent effect, which poses a challenge for understanding luminescence mechanism of TADF molecules. This review mainly summarizes the recent progresses in the influence of solvation on the delayed fluorescence made by our groups. As a result, it is shown that strongly polar solvents lead to an increase in non-radiative relaxation that is averse to TADF, as well as alteration of solvent viscosities affects the excited state conformational relaxation, resulting in the enhancement or weakening of TADF. These results are valuable for understanding the role of solvation in conformational relaxation and TADF emission, and provide guidance for the design and synthesis of TADF molecules.
有机给受体分子体系热激活延迟荧光溶剂化分子内电荷转移
organic donor-acceptor systemsthermal activated delayed fluorescencesolvationintramolecular charge transfer
DEREKA B, ROSSPEINTNER A, LI Z Q, et al. Direct visualization of excited-state symmetry breaking using ultrafast time-resolved infrared spectroscopy [J]. J. Am. Chem. Soc., 2016, 138(13): 4643-4649. doi: 10.1021/jacs.6b01362http://dx.doi.org/10.1021/jacs.6b01362
ZHANG Q S, LI B, HUANG S P, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence [J]. Nat. Photonics, 2014, 8(4): 326-332. doi: 10.1038/nphoton.2014.12http://dx.doi.org/10.1038/nphoton.2014.12
ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Appl. Phys. Lett., 2011, 98(8): 083302-1-3. doi: 10.1063/1.3558906http://dx.doi.org/10.1063/1.3558906
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
PARKER C A, HATCHARD C G. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin [J]. Trans. Faraday Soc., 1961, 57: 1894-1904. doi: 10.1039/tf9615701894http://dx.doi.org/10.1039/tf9615701894
马志华, 马荣荣, 董文月, 等. 树枝状热活化延迟荧光材料研究进展 [J]. 发光学报, 2021, 42(7): 904-916. doi: 10.37188/CJL.20210099http://dx.doi.org/10.37188/CJL.20210099
MA Z H, MA R R, DONG W Y, et al. Recent advances on thermally activated delayed fluorescence dendrimers [J]. Chin. J. Lumin., 2021, 42(7): 904-916. (in Chinese). doi: 10.37188/CJL.20210099http://dx.doi.org/10.37188/CJL.20210099
吴育南, 何缘, 靳焘, 等. 空间电荷转移热活性延迟荧光化合物的合成和应用 [J]. 发光学报, 2023, doi: 10.37188/CJL.20230034http://dx.doi.org/10.37188/CJL.20230034.
WU Y N, HE Y, JIN T, et al. Synthesis and application of thermally activated delayed fluorescence compounds with space charge transfer characteristic [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20230034.http://dx.doi.org/10.37188/CJL.20230034.(in Chinese)
曹云锋, 李旭萍, 卢建军. 基于热活化延迟荧光双发射的有机电子给体-受体型材料研究进展 [J]. 发光学报, 2021, 42(9): 1386-1395. doi: 10.37188/CJL.20210181http://dx.doi.org/10.37188/CJL.20210181
CAO Y F, LI X P, LU J J. Research progress of thermally activated delayed fluorescence materials with dual-emission based on donor-acceptor system [J]. Chin. J. Lumin., 2021, 42(9): 1386-1395. (in Chinese). doi: 10.37188/CJL.20210181http://dx.doi.org/10.37188/CJL.20210181
陆梦瑶, 宋祥安, 邹盛南, 等. 基于嘧啶及其衍生物受体的热激活延迟荧光材料研究进展 [J]. 发光学报, 2022, 43(12): 1892-1904. doi: 10.37188/cjl.20220273http://dx.doi.org/10.37188/cjl.20220273
LU M Y, SONG X A, ZOU S N, et al. Recent progress of thermally activated delayed fluorescent materials based on pyrimidine and its derivative acceptors [J]. Chin. J. Lumin., 2022, 43(12): 1892-1904. (in Chinese). doi: 10.37188/cjl.20220273http://dx.doi.org/10.37188/cjl.20220273
ADACHI C, BALDO M A, THOMPSON M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. J. Appl. Phys., 2001, 90(10): 5048-5051. doi: 10.1063/1.1409582http://dx.doi.org/10.1063/1.1409582
BROWN A R, PICHLER K, GREENHAM N C, et al. Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes [J]. Chem. Phys. Lett., 1993, 210(1-3): 61-66. doi: 10.1016/0009-2614(93)89100-vhttp://dx.doi.org/10.1016/0009-2614(93)89100-v
KELLEY T W, BAUDE P F, GERLACH C, et al. Recent progress in organic electronics: materials, devices, and processes [J]. Chem. Mater., 2004, 16(23): 4413-4422. doi: 10.1021/cm049614jhttp://dx.doi.org/10.1021/cm049614j
LO S C, BURN P L. Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells [J]. Chem. Rev., 2007, 107(4): 1097-1116. doi: 10.1021/cr050136lhttp://dx.doi.org/10.1021/cr050136l
IM Y, KIM M, CHO Y J, et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters [J]. Chem. Mater., 2017, 29(5): 1946-1963. doi: 10.1021/acs.chemmater.6b05324http://dx.doi.org/10.1021/acs.chemmater.6b05324
TURRO N J. Modern Molecular Photochemistry [M]. Menlo Park, CA: Benjamin/Cummings Publisher, 1978.
ZHOU J, CHEN P, WANG X, et al. Charge-transfer-featured materials:promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion [J]. Chem. Commun., 2014, 50(57): 7586-7589. doi: 10.1039/c4cc00576ghttp://dx.doi.org/10.1039/c4cc00576g
WALLIKEWITZ B H, KABRA D, GÉLINAS S, et al. Triplet dynamics in fluorescent polymer light-emitting diodes [J]. Phys. Rev. B, 2012, 85(4): 045209-1-15. doi: 10.1103/physrevb.85.045209http://dx.doi.org/10.1103/physrevb.85.045209
NAKAGAWA T, KU S Y, WONG K T, et al. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor⁃acceptor structure [J]. Chem. Commun., 2012, 48(77): 9580-9582. doi: 10.1039/c2cc31468ahttp://dx.doi.org/10.1039/c2cc31468a
NAKANOTANI H, HIGUCHI T, FURUKAWA T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016-1-7. doi: 10.1038/ncomms5016http://dx.doi.org/10.1038/ncomms5016
MÉHES G, NOMURA H, ZHANG Q S, et al. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence [J]. Angew. Chem. Int. Ed., 2012, 51(45): 11311-11315. doi: 10.1002/anie.201206289http://dx.doi.org/10.1002/anie.201206289
HIRATA S, SAKAI Y, MASUI K, et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence [J]. Nat. Mater., 2015, 14(3): 330-336. doi: 10.1038/nmat4154http://dx.doi.org/10.1038/nmat4154
SAMANTA P K, KIM D, COROPCEANU V, et al. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states [J]. J. Am. Chem. Soc., 2017, 139(11): 4042-4051. doi: 10.1021/jacs.6b12124http://dx.doi.org/10.1021/jacs.6b12124
NORIEGA R, BARNARD E S, URSPRUNG B, et al. Uncovering single-molecule photophysical heterogeneity of bright, thermally activated delayed fluorescence emitters dispersed in glassy hosts [J]. J. Am. Chem. Soc., 2016, 138(41): 13551-13560. doi: 10.1021/jacs.6b05488http://dx.doi.org/10.1021/jacs.6b05488
ETHERINGTON M K, GIBSON J, HIGGINBOTHAM H F, et al. Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence [J]. Nat. Commun., 2016, 7: 13680-1-7. doi: 10.1038/ncomms13680http://dx.doi.org/10.1038/ncomms13680
GIBSON J, MONKMAN A P, PENFOLD T J. The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules [J]. ChemPhysChem, 2016, 17(19): 2956-2961. doi: 10.1002/cphc.201600662http://dx.doi.org/10.1002/cphc.201600662
ETHERINGTON M K, FRANCHELLO F, GIBSON J, et al. Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters [J]. Nat. Commun., 2017, 8: 14987-1-11. doi: 10.1038/ncomms14987http://dx.doi.org/10.1038/ncomms14987
GIBSON J, PENFOLD T J. Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence [J]. Phys. Chem. Chem. Phys., 2017, 19(12): 8428-8434. doi: 10.1039/c7cp00719ahttp://dx.doi.org/10.1039/c7cp00719a
DATA P, PANDER P, OKAZAKI M, et al. Dibenzo[a,j]phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters [J]. Angew. Chem. Int. Ed., 2016, 55(19): 5739-5744. doi: 10.1002/anie.201600113http://dx.doi.org/10.1002/anie.201600113
ZHANG Q S, LI J, SHIZU K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes [J]. J. Am. Chem. Soc., 2012, 134(36): 14706-14709. doi: 10.1021/ja306538whttp://dx.doi.org/10.1021/ja306538w
TANAKA H, SHIZU K, MIYAZAKI H, et al. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine⁃triphenyltriazine (PXZ⁃TRZ) derivative [J]. Chem. Commun., 2012, 48(93): 11392-11394. doi: 10.1039/c2cc36237fhttp://dx.doi.org/10.1039/c2cc36237f
SHIZU K, TANAKA H, UEJIMA M, et al. Strategy for designing electron donors for thermally activated delayed fluorescence emitters [J]. J. Phys. Chem. C, 2015, 119(3): 1291-1297. doi: 10.1021/jp511061thttp://dx.doi.org/10.1021/jp511061t
LIM B T, OKAJIMA S, CHANDRA A K, et al. Radiationless transitions in electron donor-acceptor complexes: selection rules for S1→T intersystem crossing and efficiency of S1→S0 internal conversion [J]. Chem. Phys. Lett., 1981, 79(1): 22-27. doi: 10.1016/0009-2614(81)85280-3http://dx.doi.org/10.1016/0009-2614(81)85280-3
LI N Q, NI F, LV X L, et al. Host-dopant interaction between organic thermally activated delayed fluorescence emitter and host material: insight into the excited state [J]. Adv. Opt. Mater., 2022, 10(1): 2101343-1-27. doi: 10.1002/adom.202101343http://dx.doi.org/10.1002/adom.202101343
ANDREA PHAN HUU D K, SASEENDRAN S, DHALI R, et al. Thermally activated delayed fluorescence: polarity, rigidity, and disorder in condensed phases [J]. J. Am. Chem. Soc., 2022, 144(33): 15211-15222. doi: 10.1021/jacs.2c05537http://dx.doi.org/10.1021/jacs.2c05537
DIAS F B, BOURDAKOS K N, JANKUS V, et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters [J]. Adv. Mater., 2013, 25(27): 3707-3714. doi: 10.1002/adma.201300753http://dx.doi.org/10.1002/adma.201300753
SANTOS P L, WARD J S, DATA P, et al. Engineering the singlet-triplet energy splitting in a TADF molecule [J]. J. Mater. Chem. C, 2016, 4(17): 3815-3824. doi: 10.1039/c5tc03849ahttp://dx.doi.org/10.1039/c5tc03849a
WARD J S, NOBUYASU R S, BATSANOV A S, et al. The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules [J]. Chem. Commun., 2016, 52(12): 2612-2615. doi: 10.1039/c5cc09645fhttp://dx.doi.org/10.1039/c5cc09645f
LI W J, LIU D D, Shen F Z, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence [J]. Adv. Funct. Mater., 2012, 22(13): 2797-2803. doi: 10.1002/adfm.201200116http://dx.doi.org/10.1002/adfm.201200116
WANG K, LIU W, ZHENG C J, et al. A comparative study of carbazole-based thermally activated delayed fluorescence emitters with different steric hindrance [J]. J. Mater. Chem. C, 2017, 5(19): 4797-4803. doi: 10.1039/c7tc00681khttp://dx.doi.org/10.1039/c7tc00681k
HE G Y, ZHOU L L, SONG H W, et al. Insights into the effect of donor ability on photophysical properties of dihydroindeno[2,1-c]fluorene-based imide derivatives [J]. Phys. Chem. Chem. Phys., 2018, 20(11): 7514-7522. doi: 10.1039/c7cp07985khttp://dx.doi.org/10.1039/c7cp07985k
SONG H W, WANG K, KUANG Z R, et al. Solvent modulated excited state processes of push⁃pull molecule with hybridized local excitation and intramolecular charge transfer character [J]. Phys. Chem. Chem. Phys., 2019, 21(7): 3894-3902. doi: 10.1039/c8cp06459hhttp://dx.doi.org/10.1039/c8cp06459h
DOS SANTOS P L, WARD J S, BATSANOV A S, et al. Optical and polarity control of donor-acceptor conformation and their charge-transfer states in thermally activated delayed-fluorescence molecules [J]. J. Phys. Chem. C, 2017, 121(30): 16462-16469. doi: 10.1021/acs.jpcc.7b03672http://dx.doi.org/10.1021/acs.jpcc.7b03672
HE G Y, SHAO J J, LI Y, et al. Photophysical properties of octupolar triazatruxene-based chromophores [J]. Phys. Chem. Chem. Phys., 2016, 18(9): 6789-6798. doi: 10.1039/c5cp07563ghttp://dx.doi.org/10.1039/c5cp07563g
JIA M L, MA X N, YAN L Y, et al. Photophysical properties of intramolecular charge transfer in two newly synthesized tribranched donor-π-acceptor chromophores [J]. J. Phys. Chem. A, 2010, 114(27): 7345-7352. doi: 10.1021/jp1032355http://dx.doi.org/10.1021/jp1032355
NAGARAJAN K, MALLIA A R, MURALEEDHARAN K, et al. Enhanced intersystem crossing in core-twisted aromatics [J]. Chem. Sci., 2017, 8(3): 1776-1782. doi: 10.1039/c6sc05126jhttp://dx.doi.org/10.1039/c6sc05126j
OKAZAKI M, TAKEDA Y, DATA P, et al. Thermally activated delayed fluorescent phenothiazine-dibenzo[a,j]phenazine-phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence [J]. Chem. Sci., 2017, 8(4): 2677-2686. doi: 10.1039/c6sc04863chttp://dx.doi.org/10.1039/c6sc04863c
BOLZE T, WREE J L, KANAL F, et al. Ultrafast dynamics of a fluorescent tetrazolium compound in solution [J]. ChemPhysChem, 2018, 19(1): 138-147. doi: 10.1002/cphc.201700831http://dx.doi.org/10.1002/cphc.201700831
DOS SANTOS P L, ETHERINGTON M K, MONKMAN A P. Chemical and conformational control of the energy gaps involved in the thermally activated delayed fluorescence mechanism [J]. J. Mater. Chem. C, 2018, 6(18): 4842-4853. doi: 10.1039/c8tc00991khttp://dx.doi.org/10.1039/c8tc00991k
QIAN H, COUSINS M E, HORAK E H, et al. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission [J]. Nat. Chem., 2017, 9(1): 83-87. doi: 10.1038/nchem.2612http://dx.doi.org/10.1038/nchem.2612
KASHA M, RAWLS H R, ASHRAF El-BAYOUMI M. The exciton model in molecular spectroscopy [J]. Pure Appl. Chem., 1965, 11(3-4): 371-392. doi: 10.1351/pac196511030371http://dx.doi.org/10.1351/pac196511030371
DAVYDOV A S. Theory of Molecular Excitons [M]. New York: Plenum Press,1971. doi: 10.1007/978-1-4899-5169-4http://dx.doi.org/10.1007/978-1-4899-5169-4
ISHIMATSU R, MATSUNAMI S, SHIZU K, et al. Solvent effect on thermally activated delayed fluorescence by 1,2,3,5-tetrakis(Carbazol-9-yl)-4,6- dicyanobenzene [J]. J. Phys. Chem. A, 2013, 117(27): 5607-5612. doi: 10.1021/jp404120shttp://dx.doi.org/10.1021/jp404120s
LI Y, ZHOU M, NIU Y L, et al. Solvent-dependent intramolecular charge transfer delocalization/localization in multibranched push-pull chromophores [J]. J. Chem. Phys., 2015, 143(3): 034309-1-12. doi: 10.1063/1.4926998http://dx.doi.org/10.1063/1.4926998
GONG Y, GUO X M, WANG S F, et al. Photophysical properties of photoactive molecules with conjugated push-pull structures [J]. J. Phys. Chem. A, 2007, 111(26): 5806-5812. doi: 10.1021/jp0705323http://dx.doi.org/10.1021/jp0705323
KIM T, KIM J, MORI H, et al. Symmetry-breaking charge transfer in the excited state of directly linked push-pull porphyrin arrays [J]. Phys. Chem. Chem. Phys., 2017, 19(21): 13970-13977. doi: 10.1039/c7cp01943bhttp://dx.doi.org/10.1039/c7cp01943b
CHOI J, AHN D S, OANG K Y, et al. Charge transfer-induced torsional dynamics in the excited state of 2,6-bis(diphenylamino)anthraquinone [J]. J. Phys. Chem. C, 2017, 121(43): 24317-24323. doi: 10.1021/acs.jpcc.7b07553http://dx.doi.org/10.1021/acs.jpcc.7b07553
KARUNAKARAN V, DAS S. Direct observation of cascade of photoinduced ultrafast intramolecular charge transfer dynamics in diphenyl acetylene derivatives: via solvation and intramolecular relaxation [J]. J. Phys. Chem. B, 2016, 120(28): 7016-7023. doi: 10.1021/acs.jpcb.6b05264http://dx.doi.org/10.1021/acs.jpcb.6b05264
GRABOWSKI Z R, ROTKIEWICZ K, RETTIG W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev., 2003, 103(10): 3899-4032. doi: 10.1021/cr940745lhttp://dx.doi.org/10.1021/cr940745l
HORNG M L, GARDECKI J A, PAPAZYAN A, et al. Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited [J]. J. Phys. Chem., 1995, 99(48): 17311-17337. doi: 10.1021/j100048a004http://dx.doi.org/10.1021/j100048a004
NORTHEY T, STACEY J, PENFOLD T J. The role of solid state solvation on the charge transfer state of a thermally activated delayed fluorescence emitter [J]. J. Mater. Chem. C, 2017, 5(42): 11001-11009. doi: 10.1039/c7tc04099ghttp://dx.doi.org/10.1039/c7tc04099g
COTTS B L, MCCARTHY D G, NORIEGA R, et al. Tuning thermally activated delayed fluorescence emitter photophysics through solvation in the solid state [J]. ACS Energy Lett., 2017, 2(7): 1526-1533. doi: 10.1021/acsenergylett.7b00268http://dx.doi.org/10.1021/acsenergylett.7b00268
DELOR M, MCCARTHY D G, COTTS B L, et al. Resolving and controlling photoinduced ultrafast solvation in the solid state [J]. J. Phys. Chem. Lett., 2017, 8(17): 4183-4190. doi: 10.1021/acs.jpclett.7b01689http://dx.doi.org/10.1021/acs.jpclett.7b01689
STAVROU K, FRANCA L G, MONKMAN A P. Photophysics of TADF guest⁃host systems: introducing the idea of hosting potential [J]. ACS Appl. Electron. Mater., 2020, 2(9): 2868-2881. doi: 10.1021/acsaelm.0c00514http://dx.doi.org/10.1021/acsaelm.0c00514
MÉHES G, GOUSHI K, POTSCAVAGE W J, et al. Influence of host matrix on thermally-activated delayed fluorescence: effects on emission lifetime, photoluminescence quantum yield, and device performance [J]. Org. Electron., 2014, 15(9): 2027-2037. doi: 10.1016/j.orgel.2014.05.027http://dx.doi.org/10.1016/j.orgel.2014.05.027
HU J P, LI Y, ZHU H N, et al. Photophysical properties of intramolecular charge transfer in a tribranched donor⁃π⁃acceptor chromophore [J]. ChemPhysChem, 2015, 16(11): 2357-2365. doi: 10.1002/cphc.201500290http://dx.doi.org/10.1002/cphc.201500290
TANAKA H, SHIZU K, NAKANOTANI H, et al. Twisted intramolecular charge transfer state for long-wavelength thermally activated delayed fluorescence [J]. Chem. Mater., 2013, 25(18): 3766-3771. doi: 10.1021/cm402428ahttp://dx.doi.org/10.1021/cm402428a
KUANG Z R, HE G Y, SONG H W, et al. Conformational relaxation and thermally activated delayed fluorescence in anthraquinone-based intramolecular charge-transfer compound [J]. J. Phys. Chem. C, 2018, 122(7): 3727-3737. doi: 10.1021/acs.jpcc.7b11411http://dx.doi.org/10.1021/acs.jpcc.7b11411
ZHANG Q S, KUWABARA H, JrPOTSCAVAGE W J, et al. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence [J]. J. Am. Chem. Soc., 2014, 136(52): 18070-18081. doi: 10.1021/ja510144hhttp://dx.doi.org/10.1021/ja510144h
ZHANG W, SONG H W, KONG J, et al. Importance of conformational change in excited states for efficient thermally activated delayed fluorescence [J]. J. Phys. Chem. C, 2019, 123(32): 19322-19332. doi: 10.1021/acs.jpcc.9b03867http://dx.doi.org/10.1021/acs.jpcc.9b03867
LI M, LIU Y W, DUAN R H, et al. Aromatic‐imide‐based thermally activated delayed fluorescence materials for highly efficient organic light‐emitting diodes [J]. Angew. Chem. Int. Ed., 2017, 56(30): 8818-8822. doi: 10.1002/anie.201704435http://dx.doi.org/10.1002/anie.201704435
LI M, LI S H, ZHANG D D, et al. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence [J]. Angew. Chem. Int. Ed., 2018, 57(11): 2889-2893. doi: 10.1002/anie.201800198http://dx.doi.org/10.1002/anie.201800198
0
浏览量
271
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构