浏览全部资源
扫码关注微信
1.长春理工大学 高功率半导体国家重点实验室, 吉林 长春 130022
2.长春理工大学 重庆研究院, 重庆 401135
[ "王曲惠(1994-),女,吉林四平人,博士研究生,2016年于长春理工大学获得学士学位,主要从事半导体外延生长的研究。E-mail:936356566@qq.com " ]
[ "马晓辉(1965-),男,吉林长春人,博士,研究员,博士生导师,2008年于长春理工大学获得博士学位,主要从事光电子器件,光电子技术及应用的 研究。 E-mail: mxh@cust.edu.cn" ]
纸质出版日期:2023-04-05,
收稿日期:2022-10-23,
修回日期:2022-11-08,
移动端阅览
王曲惠,王海珠,王骄等.高应变InGaAs/GaAs多量子阱中的局域态问题[J].发光学报,2023,44(04):627-633.
WANG Quhui,WANG Haizhu,WANG Jiao,et al.Localized States of High-strain InGaAs/GaAs Multiple Quantum Wells[J].Chinese Journal of Luminescence,2023,44(04):627-633.
王曲惠,王海珠,王骄等.高应变InGaAs/GaAs多量子阱中的局域态问题[J].发光学报,2023,44(04):627-633. DOI: 10.37188/CJL.20220375.
WANG Quhui,WANG Haizhu,WANG Jiao,et al.Localized States of High-strain InGaAs/GaAs Multiple Quantum Wells[J].Chinese Journal of Luminescence,2023,44(04):627-633. DOI: 10.37188/CJL.20220375.
针对高应变InGaAs/GaAs多量子阱中存在的局域态问题,利用金属有机化合物气相外延(MOCVD)技术,设计并生长了五周期的In
0.3
Ga
0.7
As/GaAs高应变多量子阱材料。通过原子力显微镜(Atomic force microscope,AFM)和变温光致发光(Photoluminescence,PL)测试,发现量子阱内部存在缺陷及组分波动的材料无序性表现,验证了多量子阱内部局域态的存在及起源。同时发现在不同测试位置,局域态在低温下对光谱的影响也不同,分别表现为双峰分布和峰位“S”型变化。这进一步说明材料内部无序化程度不同,导致局域态的深度也不同。依据温度⁃带隙关系的拟合,提出了包含局域态的多量子阱材料的电势分布,并揭示了局域态载流子和自由载流子的复合机制。并且借助变功率PL测试,研究了在不同激发功率密度下不同深度的局域态的发光特性。
In order to study the localized states in high-strain InGaAs/GaAs multiple quantum wells (MQWs), a five-period In
0.3
Ga
0.7
As/GaAs MQWs structure was designed and grown by metal-organic chemical vapor deposition (MOCVD) technique in this paper. By means of AFM and temperature-dependent PL, the material disorders in MQWs such as defects and component fluctuation were found, and the existence and origin of localized states in MQWs were verified. The influence of the localized states on the spectra at low temperature was different for different measurement positions, exhibiting a bimodal distribution and an “S”-shaped change in peak position, respectively. This further indicated that different disorder within the material led to different depths of localized states. Based on the fitting of the temperature-bandgap relationship, the potential distribution of the MQWs structure containing localized states was proposed, and the recombination mechanism of the localized state carriers and free carriers was revealed. The optical properties of localized states at different depths under different excitation power densities were studied with the help of excitation power-dependent PL measurement.
InGaAs/GaAs多量子阱局域态高应变金属有机化合物气相外延(MOCVD)
InGaAs/GaAs MQWslocalized stateshigh strainmetal⁃organic chemical vapor deposition(MOCVD)
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展 [J]. 发光学报, 2015, 36(1): 1-19. doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
WANG L J, NING Y Q, QIN L, et al. Development of high power diode laser [J]. Chin. J. Lumin., 2015, 36(1): 1-19. (in Chinese). doi: 10.3788/fgxb20153601.0001bhttp://dx.doi.org/10.3788/fgxb20153601.0001b
陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展 [J]. 中国激光, 2020, 47(5): 0500001-1-23. doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
CHEN L H, YANG G W, LIU Y X, et al. Development of semiconductor lasers [J]. Chin. J. Lasers, 2020, 47(5): 0500001-1-23. (in Chinese). doi: 10.3788/cjl202047.0500001http://dx.doi.org/10.3788/cjl202047.0500001
QIAO Z L, LI X, WANG H, et al. High-performance 1.06-μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers [J]. Semicond. Sci. Technol., 2019, 34(5): 055013-1-6. doi: 10.1088/1361-6641/ab110bhttp://dx.doi.org/10.1088/1361-6641/ab110b
KALYUZHNYY N A, EMELYANOV V M, EVSTROPOV V V, et al. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ= 1 064 nm) power converters with over 50% efficiency [J]. Sol. Energy Mater. Sol. Cells, 2020, 217: 110710-1-8. doi: 10.1016/j.solmat.2020.110710http://dx.doi.org/10.1016/j.solmat.2020.110710
YANG H M, ZHENG Y L, TANG Z, et al. MBE growth of high performance very long wavelength InGaAs/GaAs quantum well infrared photodetectors [J]. J. Phys. D: Appl. Phys., 2020, 53(13): 135110-1-7. doi: 10.1088/1361-6463/ab66d7http://dx.doi.org/10.1088/1361-6463/ab66d7
HSU K C, HO C H, LIN Y S, et al. Optical and electrical characteristics of GaAs/InGaAs quantum-well device [J]. J. Alloys Compd., 2009, 471(1-2): 567-569. doi: 10.1016/j.jallcom.2008.04.089http://dx.doi.org/10.1016/j.jallcom.2008.04.089
SAIDI F, HAMILA R, MAAREF H, et al. Structural and optical study of BxInyGa1-x-yAs/GaAs and InyGa1-yAs/GaAs QW's grown by MOCVD [J]. J. Alloys Compd., 2010, 491(1-2): 45-48. doi: 10.1016/j.jallcom.2009.10.244http://dx.doi.org/10.1016/j.jallcom.2009.10.244
CHAN C H, WU J D, HUANG Y S, et al. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy [J]. Mater. Chem. Phys., 2010, 124(2-3): 1126-1133. doi: 10.1016/j.matchemphys.2010.08.046http://dx.doi.org/10.1016/j.matchemphys.2010.08.046
ROY S, HASSAN M, KARMAKER A, et al. Strain-dependent optical properties of [113]-oriented InGaAs/GaAs quantum well [C]. 2015 International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, 2015: 340-343. doi: 10.1109/icaee.2015.7506864http://dx.doi.org/10.1109/icaee.2015.7506864
BUGGE F, ZEIMER U, SATO M, et al. MOVPE growth of highly strained InGaAs/GaAs quantum wells [J]. J. Cryst. Growth, 1998, 183(4): 511-518. doi: 10.1016/s0022-0248(97)00503-4http://dx.doi.org/10.1016/s0022-0248(97)00503-4
SCHLENKER D, MIYAMOTO T, CHEN Z, et al. Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers [J]. J. Cryst. Growth, 2000, 209(1): 27-36. doi: 10.1016/s0022-0248(99)00524-2http://dx.doi.org/10.1016/s0022-0248(99)00524-2
KANG S, KIM J, JANG C W, et al. Thermally induced metastability of InGaAs single-layer for highly strained superlattices by metal-organic chemical vapor deposition [J]. J. Alloys Compd., 2022, 905: 164252-1-7. doi: 10.1016/j.jallcom.2022.164252http://dx.doi.org/10.1016/j.jallcom.2022.164252
WANG Q, GAO X G, XU Y L, et al. Carrier localization in strong phase-separated InGaN/GaN multiple-quantum-well dual-wavelength LEDs [J]. J. Alloys Compd., 2017, 726: 460-465. doi: 10.1016/j.jallcom.2017.07.326http://dx.doi.org/10.1016/j.jallcom.2017.07.326
MAROS A, FALEEV N N, BERTONI M I, et al. Carrier localization effects in GaAs1-xSbx/GaAs heterostructures [J]. J. Appl. Phys., 2016, 120(18): 183104-1-7. doi: 10.1063/1.4967755http://dx.doi.org/10.1063/1.4967755
GAO X, FANG X, TANG J L, et al. The strain, energy band and photoluminescence of GaAs0.92Sb0.08/Al0.3Ga0.7As multiple quantum wells grown on GaAs substrate [J]. Solid State Commun., 2020, 309: 113837-1-5. doi: 10.1016/j.ssc.2020.113837http://dx.doi.org/10.1016/j.ssc.2020.113837
SHIMOSAKO N, INOSE Y, SATOH H, et al. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film [J]. J. Appl. Phys., 2015, 118(17): 175702-1-5. doi: 10.1063/1.4935025http://dx.doi.org/10.1063/1.4935025
MARCINKEVICIUS S, KELCHNER K M, NAKAMURA S, et al. Optical properties of extended and localized states in m-plane InGaN quantum wells [J]. Appl. Phys. Lett., 2013, 102(10): 101102-1-5. doi: 10.1063/1.4794904http://dx.doi.org/10.1063/1.4794904
JOHNSON N M, NURMIKKO A V, DENBAARS S P. Blue diode lasers [J]. Phys. Today, 2000, 53(10): 31-36. doi: 10.1063/1.1325190http://dx.doi.org/10.1063/1.1325190
ULLOA J M, HIERRO A, MIGUEL-SÁNCHEZ J, et al. Correlation between quantum well morphology, carrier localization and the optoelectronic properties of GaInNAs/GaAs light emitting diodes [J]. Semicond. Sci. Technol., 2006, 21(8): 1047-1052. doi: 10.1088/0268-1242/21/8/011http://dx.doi.org/10.1088/0268-1242/21/8/011
WANG J, WANG H Z, WANG Q H, et al. Effect of localized states on the optical properties in InGaAs/GaAs multiple quantum wells grown by MOCVD [J]. Photonic. Nanostruct., 2022, 51: 101047. doi: 10.1016/j.photonics.2022.101047http://dx.doi.org/10.1016/j.photonics.2022.101047
SU Y K, CHEN W C, WAN C T, et al. Optimization of the highly strained InGaAs/GaAs quantum well lasers grown by MOVPE [J]. J. Cryst. Growth, 2008, 310(15): 3615-3620. doi: 10.1016/j.jcrysgro.2008.04.041http://dx.doi.org/10.1016/j.jcrysgro.2008.04.041
O’DONNELL K P, CHEN X. Temperature dependence of semiconductor band gaps [J]. Appl. Phys. Lett., 1991, 58(25): 2924-2926. doi: 10.1063/1.104723http://dx.doi.org/10.1063/1.104723
GE X T, WANG D K, GAO X, et al. Localized states emission in type-Ⅰ GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy [J]. Phys. Status Solidi RRL, 2017, 11(3): 1700001-1-5. doi: 10.1002/pssr.201700001http://dx.doi.org/10.1002/pssr.201700001
0
浏览量
487
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构