浏览全部资源
扫码关注微信
安徽师范大学 物理与电子信息学院, 安徽 芜湖 241000
Published:05 September 2022,
Received:20 April 2022,
Revised:29 April 2022,
移动端阅览
乔政,马健,营逍等.Eu2+掺杂A2CaPO4F(A=K,Rb)格位占据和发光性质的第一性原理研究[J].发光学报,2022,43(09):1340-1349.
QIAO Zheng,MA Jian,YING Xiao,et al.First-principles on Site Occupation and Luminescence Properties of Eu2+-doped A2CaPO4F(A = K, Rb)[J].Chinese Journal of Luminescence,2022,43(09):1340-1349.
乔政,马健,营逍等.Eu2+掺杂A2CaPO4F(A=K,Rb)格位占据和发光性质的第一性原理研究[J].发光学报,2022,43(09):1340-1349. DOI: 10.37188/CJL.20220148.
QIAO Zheng,MA Jian,YING Xiao,et al.First-principles on Site Occupation and Luminescence Properties of Eu2+-doped A2CaPO4F(A = K, Rb)[J].Chinese Journal of Luminescence,2022,43(09):1340-1349. DOI: 10.37188/CJL.20220148.
Eu
2+
⁃激活
A
2
CaPO
4
F(
A=
K,Rb)荧光粉因具有优异的发光性能而引起研究人员的重点关注。然而,Eu
2+
掺杂格位占据和光谱指认及其光谱调控机制依然不甚清楚。本文采用密度泛函理论系统计算了Eu
2+
占据不同晶体学格位时的缺陷形成能及光学跃迁能量,以此为基础对发射光谱进行指认。结果表明,K
2
CaPO
4
F∶Eu
2+
位于660 nm附近和480 nm附近的发射峰虽然都来自Eu
2+
占据在K格位,但二者的电荷补偿方式不同:前者两个配位F原子被O原子取代,同时与其中一个O原子近邻的K原子被Ca原子取代;后者只有一个配位F原子被O原子取代。Rb
2
CaPO
4
F∶Eu
2+
位于480 nm附近的发射峰来自Eu
2+
占据Rb格位,电荷补偿方式为:两个配位F原子被O原子取代,同时与两个O原子都相邻的K原子被Ca原子取代。此外,对Eu
2+
占据格位的配位环境和电子结构进行分析,讨论了其与光谱发射峰位置之间的变化关系。本工作不仅诠释了实验现象,还可以为实验上进一步优化荧光粉发光性能提供理论参考。
Eu
2+
-activated
A
2
CaPO
4
F(
A=
K,Rb)phosphors have attracted significant attention for their superior luminescence properties. However, the site occupation, the associated spectral assignment of dopant Eu
2+
, and hence the mechanism behind the site-regulated emission tuning, still remain elusive. Herein, we carried out systematic density functional theory calculations on defect formation energies and optical transitions of Eu
2+
situated at different crystallographic sites with various local charge compensations. It shows that, for K
2
CaPO
4
F∶Eu
2+
, the ~660 nm emission is due to Eu
2+
located on the K site with charge compensation by two coordinating O
F
substitutions plus one Ca
K
near one of the two O
F
defects, while the ~480 nm emission comes from Eu
2+
located on the K site with charge compensation by one coordinating O
F
substitution. For Rb
2
CaPO
4
F∶Eu
2+
, the ~480 nm emission originates from Eu
2+
located at the Rb site with two coordinating O
F
defects plus one Ca
Rb
near both the O
F
defects. On this basis, we analyze Eu
2+
local environments and electronic properties, and discuss their relationship with the relative spectral shift from Eu
2+
in K
2
CaPO
4
F∶Eu
2+
to Rb
2
CaPO
4
F. Our results can not only assist in the understanding of experimental observations but also provide a theoretical basis for further performance optimization of the phosphors.
Eu2+掺杂A2CaPO4F(A=K,Rb)密度泛函理论计算格位占据发光性质
Eu2+ -dopingA2CaPO4F (A=K, Rb)density functional theory calculationssite occupationluminescence properties
SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726): 1274-1278. doi: 10.1126/science.1108712http://dx.doi.org/10.1126/science.1108712
HÖPPE H. Recent developments in the field of inorganic phosphors [J]. Angew. Chem. Int. Ed., 2009, 48(20): 3572-3582. doi: 10.1002/anie.200804005http://dx.doi.org/10.1002/anie.200804005
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展 [J]. 发光学报, 2021, 42(5): 580-604. doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display [J]. Chin. J. Lumin., 2021, 42(5): 580-604. (in Chinese). doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators [J]. Nature, 2018, 561(7721): 88-93. doi: 10.1038/s41586-018-0451-1http://dx.doi.org/10.1038/s41586-018-0451-1
BECKER M A, VAXENBURG R, NEDELCU G, et al. Bright triplet excitons in caesium lead halide perovskites [J]. Nature, 2018, 553(7687): 189-193. doi: 10.1038/nature25147http://dx.doi.org/10.1038/nature25147
DAICHO H, SHINOMIYA Y, ENOMOTO K, et al. A novel red-emitting K2Ca(PO4)F∶Eu2+ phosphor with a large Stokes shift [J]. Chem. Commun., 2018, 54(8): 884-887. doi: 10.1039/c7cc08202ahttp://dx.doi.org/10.1039/c7cc08202a
LI Y, QIU Z X, ZHANG J L, et al. Highly efficient and thermally stable single-activator white-emitting phosphor K2Ca⁃(PO4)F∶Eu2+ for white light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(29): 8982-8991. doi: 10.1039/C9TC02844Ghttp://dx.doi.org/10.1039/C9TC02844G
KANG Z Y, WANG S C, SETO T, et al. A highly efficient Eu2+ excited phosphor with luminescence tunable in visible range and its applications for plant growth [J]. Adv. Opt. Mater., 2021, 9(22): 2101173-1-12. doi: 10.1002/adom.202101173http://dx.doi.org/10.1002/adom.202101173
ZHANG R, SUN J F. An efficient perovskite-type Rb2CaPO4F∶Eu2+ phosphor with high brightness towards closing the cyan gap [J]. J. Alloys Compd., 2021, 872: 159698-1-16. doi: 10.1016/j.jallcom.2021.159698http://dx.doi.org/10.1016/j.jallcom.2021.159698
WU D W, SHI C, ZHOU J C, et al. Full-visible-spectrum lighting enabled by site-selective occupation in the high efficient and thermal stable (Rb, K)2CaPO4F∶Eu2+ solid-solution phosphors [J]. Chem. Eng. J., 2022, 430: 133062. doi: 10.1016/j.cej.2021.133062http://dx.doi.org/10.1016/j.cej.2021.133062
LI G G, LIN C C, CHEN W T, et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms [J]. Chem. Mater., 2014, 26(9): 2991-3001. doi: 10.1021/cm500844vhttp://dx.doi.org/10.1021/cm500844v
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives [J]. Chem. Rev., 2018, 118(4): 1951-2009. doi: 10.1021/acs.chemrev.7b00284http://dx.doi.org/10.1021/acs.chemrev.7b00284
QIN X, LIU X W, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects [J]. Chem. Rev., 2017, 117(5): 4488-4527. doi: 10.1021/acs.chemrev.6b00691http://dx.doi.org/10.1021/acs.chemrev.6b00691
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs [J]. Prog. Mater. Sci., 2016, 84: 59-117. doi: 10.1016/j.pmatsci.2016.09.007http://dx.doi.org/10.1016/j.pmatsci.2016.09.007
DORENBOS P. [INVITED] Improved parameters for the lanthanide 4f q and 4f q-15d curves in HRBE and VRBE schemes that takes the nephelauxetic effect into account [J]. J. Lumin., 2020, 222: 117164-1-11. doi: 10.1016/j.jlumin.2020.117164http://dx.doi.org/10.1016/j.jlumin.2020.117164
KHAN S A, KHAN N Z, SOHAIL M, et al. Modern aspects of strategies for developing single-phase broadly tunable white light-emitting phosphors [J]. J. Mater. Chem. C, 2021, 9(38): 13041-13071. doi: 10.1039/d1tc02952ehttp://dx.doi.org/10.1039/d1tc02952e
KRÖGER F A, VINK H J. Relations between the concentrations of imperfections in crystalline solids [J]. Solid State Phys., 1956, 3: 307-435. doi: 10.1016/s0081-1947(08)60135-6http://dx.doi.org/10.1016/s0081-1947(08)60135-6
JONES R O. Density functional theory: its origins, rise to prominence, and future [J]. Rev. Mod. Phys., 2015, 87(3): 897-923. doi: 10.1103/revmodphys.87.897http://dx.doi.org/10.1103/revmodphys.87.897
BECKE A D. Perspective: fifty years of density-functional theory in chemical physics [J]. J. Chem. Phys., 2014, 140(18): 18A301-1-18. doi: 10.1063/1.4869598http://dx.doi.org/10.1063/1.4869598
ALKAUSKAS A, MCCLUSKEY M D, VAN DE WALLE C G. Tutorial: defects in semiconductors—combining experiment and theory [J]. J. Appl. Phys., 2016, 119(18): 181101-1-11. doi: 10.1063/1.4948245http://dx.doi.org/10.1063/1.4948245
CHAI K, CHENG S C, LI H Y, et al. Modulation of perovskite-related frameworks induced by alkaline earth metals in phosphate fluorides A2MPO4F (A=K, Rb; M=Ba, Ca)[J]. New J. Chem., 2019, 43(20): 7839-7845. doi: 10.1039/c9nj01051chttp://dx.doi.org/10.1039/c9nj01051c
JIA Y C, MIGLIO A, PONCÉ S, et al. First-principles study of the luminescence of Eu2+-doped phosphors [J]. Phys. Rev. B, 2017, 96(12): 125132-1-4. doi: 10.1103/physrevb.96.125132http://dx.doi.org/10.1103/physrevb.96.125132
NING L X, HUANG X X, HUANG Y C, et al. Origin of the green persistent luminescence of Eu-doped SrAl2O4 from a multiconfigurational ab initio study of 4f7 → 4f65d1 transitions [J]. J. Mater. Chem. C, 2018, 6(25): 6637-6640. doi: 10.1039/c8tc02141dhttp://dx.doi.org/10.1039/c8tc02141d
DU M H, REBOREDO F A. (INVITED)First-principles calculations of quantum transitions at local centers [J]. Opt. Mater.: Ⅹ, 2020, 8: 100066-1-8. doi: 10.1016/j.omx.2020.100066http://dx.doi.org/10.1016/j.omx.2020.100066
DU M H. Using DFT methods to study activators in optical materials [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3007-R3018. doi: 10.1149/2.0011601jsshttp://dx.doi.org/10.1149/2.0011601jss
PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations [J]. J. Chem. Phys., 1996, 105(22): 9982-9985. doi: 10.1063/1.472933http://dx.doi.org/10.1063/1.472933
CANNING A, CHAUDHRY A, BOUTCHKO R, et al. First-principles study of luminescence in Ce-doped inorganic scintillators [J]. Phys. Rev. B, 2011, 83(12): 125115-1-12. doi: 10.1103/physrevb.83.125115http://dx.doi.org/10.1103/physrevb.83.125115
DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study [J]. Phys. Rev. B, 1998, 57(3): 1505-1509. doi: 10.1103/physrevb.57.1505http://dx.doi.org/10.1103/physrevb.57.1505
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54(16): 11169-11186. doi: 10.1103/physrevb.54.11169http://dx.doi.org/10.1103/physrevb.54.11169
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59(3): 1758-1775. doi: 10.1103/physrevb.59.1758http://dx.doi.org/10.1103/physrevb.59.1758
BLÖCHL P E. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953-17979. doi: 10.1103/physrevb.50.17953http://dx.doi.org/10.1103/physrevb.50.17953
JIA Y C, PONCÉ S, MIGLIO A, et al. Assessment of first-principles and semiempirical methodologies for absorption and emission energies of Ce3+-doped luminescent materials [J]. Adv. Opt. Mater., 2017, 5(7): 1600997-1-12. doi: 10.1002/adom.201600997http://dx.doi.org/10.1002/adom.201600997
孙怀洋, 蒋鸿. 稀土发光材料理论计算方法研究现状 [J]. 中国稀土学报, 2021, 39(3): 350-375. doi: 10.11785/S1000-4343.20210303http://dx.doi.org/10.11785/S1000-4343.20210303
SUN H Y, JIANG H. Current status of theoretical approaches to rare earth luminescent materials [J]. J. Chin. Soc. Rare Earths, 2021, 39(3): 350-375. (in Chinese). doi: 10.11785/S1000-4343.20210303http://dx.doi.org/10.11785/S1000-4343.20210303
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
TOYOZAWA Y. Optical Processes in Solids [M]. New York: Cambridge University Press, 2003. doi: 10.1017/cbo9780511615085http://dx.doi.org/10.1017/cbo9780511615085
HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids [M]. Oxford: Oxford University Press, 2006.
STONEHAM A M. Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors [M]. Oxford: Oxford University Press, 2001. doi: 10.1093/acprof:oso/9780198507802.003.0002http://dx.doi.org/10.1093/acprof:oso/9780198507802.003.0002
NING L X, JI X W, DONG Y Y, et al. First-principles study of Ce-doped Y3Al5O12 with Si—N incorporation: electronic structures and optical properties [J]. J. Mater. Chem. C, 2016, 4(23): 5214-5221. doi: 10.1039/c6tc01691jhttp://dx.doi.org/10.1039/c6tc01691j
NING L X, HUANG X X, SUN J C, et al. Effects of Si codoping on optical properties of Ce-doped Ca6BaP4O17: insights from first-principles calculations [J]. J. Phys. Chem. C, 2016, 120(7): 3999-4006. doi: 10.1021/acs.jpcc.5b11659http://dx.doi.org/10.1021/acs.jpcc.5b11659
OOMEN E W J L, DIRKSEN G J, SMIT W M A, et al. On the luminescence of the Sb3+ ion in Cs2NaMBr6(M=Sc, Y, La)[J]. J. Phys. C: Solid State Phys., 1987, 20(8): 1161-1171. doi: 10.1088/0022-3719/20/8/017http://dx.doi.org/10.1088/0022-3719/20/8/017
VAN STEENSEL L I, BLASSE G. The luminescence of Sb3+ in LaOCl [J]. J. Alloys Compd., 1996, 232(1-2): 60-62. doi: 10.1016/0925-8388(95)02017-9http://dx.doi.org/10.1016/0925-8388(95)02017-9
DORENBOS P. (INVITED)Blasse's Pandora's box [J]. Opt. Mater.: Ⅹ, 2021, 11: 100076-1-6. doi: 10.1016/j.omx.2021.100076http://dx.doi.org/10.1016/j.omx.2021.100076
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallogr. A, 1976, 32(5): 751-767. doi: 10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
0
Views
447
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution