浏览全部资源
扫码关注微信
1.南方科技大学 化学系, 广东 深圳 518055
2.聊城大学 山东省光通信科学与技术重点实验室, 山东 聊城 252000
3.松山湖材料实验室 前沿科学研究⁃功能配位材料团队, 广东 东莞 523808
[ "谭丽(1988-),女,湖南衡阳人,博士,2018年于德国波茨坦大学获得博士学位,主要从事金属卤化物合成及其光谱性能的研究。E‐mail: tanlijanis@126.com" ]
[ "权泽卫(1982-),男,河南洛阳人,博士,教授,博士生导师,2009年于中国科学院长春应用化学研究所获得博士学位,主要从事新型无机功能材料的研究。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-09-29,
修回日期:2022-10-17,
移动端阅览
谭丽,罗志山,李茜等.基于零维杂化锑基氯化物的可逆荧光发射转化[J].发光学报,2023,44(03):537-547.
TAN Li,LUO Zhishan,LI Qian,et al.Reversible Emission Transformations in Zero-dimensional Hybrid Antimony Chlorides[J].Chinese Journal of Luminescence,2023,44(03):537-547.
谭丽,罗志山,李茜等.基于零维杂化锑基氯化物的可逆荧光发射转化[J].发光学报,2023,44(03):537-547. DOI: 10.37188/CJL.20220357.
TAN Li,LUO Zhishan,LI Qian,et al.Reversible Emission Transformations in Zero-dimensional Hybrid Antimony Chlorides[J].Chinese Journal of Luminescence,2023,44(03):537-547. DOI: 10.37188/CJL.20220357.
零维有机-无机杂化金属卤化物因可调控的自陷态激子发射在发光和显示等领域具有很好的应用前景。特别是同时具有单线态和三线态激子发射双带光谱的零维金属卤化物在白光固态照明应用中极具潜力。本工作报道了两种零维杂化锑基氯化物(C
24
H
20
P)
2
SbCl
5
(
Ⅰ
) 和 (C
24
H
20
P)
2
SbCl
5
⋅H
2
O·0.5DMF(
Ⅱ
)(C
24
H
20
P为四苯基膦,Ph
4
P)。在低能量光子(如360 nm)激发下,化合物
Ⅰ
和
Ⅱ
分别呈现出由自陷态激子发射的红色和黄色的单峰宽带光谱。此外,当用高能量光子(如310 nm)激发时,
Ⅱ
的光谱呈现出双带白光发射,除黄光发射带外,还出现了一个源于单线态自陷激发发射的蓝光发射带。研究表明,通过引入和去除DMF和水分子,化合物
Ⅰ
和
Ⅱ
能实现可逆转化。该研究揭示了小分子对零维杂化金属卤化物晶体结构的调控机制,从而实现单带发射和双带发射之间的转变,为设计具有小分子传感应用的零维金属卤化物奠定了研究基础。
Zero-dimensional (0D) hybrid metal halides with tunable self-trapped exciton (STE) emissions are promising for lighting and displaying applications. In particular, 0D hybrid metal halides with dual-band emissions arising from singlet and triplet STEs have potentials in white-light solid-state lighting. Herein, two 0D hybrid antimony chlorides, (C
24
H
20
P)
2
SbCl
5
(
Ⅰ
) and (C
24
H
20
P)
2
SbCl
5
⋅H
2
O⋅0.5DMF(
Ⅱ
) (C
24
H
20
P = tetraphenylphosphonium, Ph
4
P) are reported. The compounds
Ⅰ
and
Ⅱ
exhibit single broadband red and yellow emissions upon low-energy (LE) photons (
e.g.
360 nm) excitation, respectively, arising from their triplet STEs. In addition, upon high-energy (HE) photons (
e.g.
310 nm) excitation, the compound
Ⅱ
shows a dual-band emission with an additional blue emission band deriving from singlet STEs, exhibiting a warm-white emission. Intriguingly, a reversible phase transformation between
Ⅰ
and
Ⅱ
is achieved through a dynamic insertion and extraction of DMF and water molecules. This work unravels the effect of small molecules on the crystalline structures and the conversion between single- and dual-band emission properties in 0D antimony halides, which could guide the design of 0D hybrid metal halides for sensor applications.
零维杂化锑基氯化物自陷态激子小分子双带发射
zero-dimensionalhybrid antimony halideself-trapped excitonsmall moleculedual-band emission
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
ZHAO X F, TAN Z K. Large-area near-infrared perovskite light-emitting diodes [J]. Nat. Photonics, 2020, 14(4): 215-218. doi: 10.1038/s41566-019-0559-3http://dx.doi.org/10.1038/s41566-019-0559-3
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes [J]. Nat. Electron., 2022, 5(4): 203-216. doi: 10.1038/s41928-022-00745-7http://dx.doi.org/10.1038/s41928-022-00745-7
ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications [J]. Chem. Soc. Rev., 2016, 45(3): 655-689. doi: 10.1039/c4cs00458bhttp://dx.doi.org/10.1039/c4cs00458b
GAN Z X, CHENG Y C, CHEN W J, et al. Photophysics of 2D organic⁃inorganic hybrid lead halide perovskites: progress, debates, and challenges [J]. Adv. Sci., 2021, 8(6): 2001843-1-18. doi: 10.1002/advs.202001843http://dx.doi.org/10.1002/advs.202001843
LEUNG S F, HO K T, KUNG P K, et al. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity [J]. Adv. Mater., 2018, 30(8): 1704611-1-8. doi: 10.1002/adma.201704611http://dx.doi.org/10.1002/adma.201704611
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271http://dx.doi.org/10.1038/nmat4271
ZHANG H H, LIAO Q, WU Y S, et al. 2D Ruddlesden⁃Popper perovskites microring laser array [J]. Adv. Mater., 2018, 30(15): 1706186-1-8. doi: 10.1002/adma.201706186http://dx.doi.org/10.1002/adma.201706186
LI Z, KLEIN T R, KIM D H, et al. Scalable fabrication of perovskite solar cells [J]. Nat. Rev. Mater., 2018, 3(4): 18017-1-20. doi: 10.1038/natrevmats.2018.17http://dx.doi.org/10.1038/natrevmats.2018.17
CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells [J]. Science, 2017, 358(6364): 739-744. doi: 10.1126/science.aam6323http://dx.doi.org/10.1126/science.aam6323
ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells [J]. Science, 2022, 377(6605): 531-534. doi: 10.1126/science.abp8873http://dx.doi.org/10.1126/science.abp8873
ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J]. Chem. Sci., 2018, 9(3): 586-593. doi: 10.1039/c7sc04539ehttp://dx.doi.org/10.1039/c7sc04539e
LUO Z S, LIU Y J, LIU Y L, et al. Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti-counterfeiting applications [J]. Adv. Mater., 2022, 34(18): 2200607-1-8. doi: 10.1002/adma.202200607http://dx.doi.org/10.1002/adma.202200607
DOHNER E R, HOKE E T, KARUNADASA H I. Self-assembly of broadband white-light emitters [J]. J. Am. Chem. Soc., 2014, 136(5): 1718-1721. doi: 10.1021/ja411045rhttp://dx.doi.org/10.1021/ja411045r
WANG X M, MENG W W, LIAO W Q, et al. Atomistic mechanism of broadband emission in metal halide perovskites [J]. J. Phys. Chem. Lett., 2019, 10(3): 501-506. doi: 10.1021/acs.jpclett.8b03717http://dx.doi.org/10.1021/acs.jpclett.8b03717
HU T, SMITH M D, DOHNER E R, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites [J]. J. Phys. Chem. Lett., 2016, 7(12): 2258-2263. doi: 10.1021/acs.jpclett.6b00793http://dx.doi.org/10.1021/acs.jpclett.6b00793
ZHOU C K, WORKU M, NEU J, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency [J]. Chem. Mater., 2018, 30(7): 2374-2378. doi: 10.1021/acs.chemmater.8b00129http://dx.doi.org/10.1021/acs.chemmater.8b00129
LI Z Y, LI Y, LIANG P, et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency [J]. Chem. Mater., 2019, 31(22): 9363-9371. doi: 10.1021/acs.chemmater.9b02935http://dx.doi.org/10.1021/acs.chemmater.9b02935
JING Y Y, LIU Y, LI M Z, et al. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides [J]. Adv. Opt. Mater., 2021, 9(8): 2002213-1-15. doi: 10.1002/adom.202002213http://dx.doi.org/10.1002/adom.202002213
LI C, LUO Z S, LIU Y L, et al. Self-trapped exciton emission with high thermal stability in antimony-doped hybrid manganese chloride [J]. Adv. Opt. Mater., 2022, 10(12): 2102746. doi: 10.1002/adom.202102746http://dx.doi.org/10.1002/adom.202102746
LUO J B, WEI J H, ZHANG Z Z, et al. Water-molecule-induced emission transformation of zero-dimension antimony-based metal halide [J]. Inorg. Chem., 2022, 61(1): 338-345. doi: 10.1021/acs.inorgchem.1c02871http://dx.doi.org/10.1021/acs.inorgchem.1c02871
SONG G M, LI M Z, ZHANG S Z, et al. Enhancing photoluminescence quantum yield in 0d metal halides by introducing water molecules [J]. Adv. Funct. Mater., 2020, 30(32): 2002468-1-6. doi: 10.1002/adfm.202002468http://dx.doi.org/10.1002/adfm.202002468
DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program [J]. J. Appl. Crystallogr., 2009, 42(2): 339-341. doi: 10.1107/s0021889808042726http://dx.doi.org/10.1107/s0021889808042726
SHELDRICK G M. SHELXT—Integrated space-group and crystal-structure determination [J]. Acta Crystallogr., 2015, 71A(1): 3-8. doi: 10.1107/s2053273314026370http://dx.doi.org/10.1107/s2053273314026370
SU B B, GENG S N, XIAO Z W, et al. Highly distorted antimony(Ⅲ) chloride [Sb2Cl8]2- dimers for near-infrared luminescence up to 1 070 nm [J]. Angew. Chem. Int. Ed., 2022, 61(33): e202208881-1-5. doi: 10.1002/anie.202208881http://dx.doi.org/10.1002/anie.202208881
WANG Z P, XIE D L, ZHANG F, et al. Controlling information duration on rewritable luminescent paper based on hybrid antimony (Ⅲ) chloride/small-molecule absorbates [J]. Sci. Adv., 2020, 6(48): eabc2181-1-9. doi: 10.1126/sciadv.abc2181http://dx.doi.org/10.1126/sciadv.abc2181
BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides [J]. Angew. Chem. Int. Ed., 2018, 57(35): 11329-11333. doi: 10.1002/anie.201806452http://dx.doi.org/10.1002/anie.201806452
SHI H L, HAN D, CHEN S Y, et al. Impact of metal ns2 lone pair on luminescence quantum efficiency in low-dimensional halide perovskites [J]. Phys. Rev. Mater., 2019, 3(3): 034604-1-7. doi: 10.1103/physrevmaterials.3.034604http://dx.doi.org/10.1103/physrevmaterials.3.034604
LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
CHEN G L, ZHOU J, FENG H, et al. A simple and efficient phosphorescent probe for iodide-specific detection based on crystallization-induced phosphorescence of organic ionic crystals [J]. J. Mater. Chem. C, 2019, 7(1): 43-47. doi: 10.1039/c8tc04781bhttp://dx.doi.org/10.1039/c8tc04781b
MCCALL K M, MORAD V, BENIN B M, et al. Efficient lone-pair-driven luminescence: structure⁃property relationships in emissive 5s2 metal halides [J]. ACS Mater. Lett., 2020, 2(9): 1218-1232. doi: 10.1021/acsmaterialslett.0c00211http://dx.doi.org/10.1021/acsmaterialslett.0c00211
LIU M Z, DUAN C K, TANNER P A, et al. Understanding photoluminescence of Cs2ZrCl6 doped with post-transition-metal ions using first-principles calculations [J]. Phys. Rev. B, 2022, 105(19): 195137. doi: 10.1103/physrevb.105.195137http://dx.doi.org/10.1103/physrevb.105.195137
ZHOU C K, LIN H R, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency [J]. ACS Energy Lett., 2019, 4(7): 1579-1583.
RANFAGNI A, MUGNAI D, BACCI M, et al. The optical properties of thallium-like impurities in alkali-halide crystals [J]. Adv. Phys., 1983, 32(6): 823-905. doi: 10.1080/00018738300101621http://dx.doi.org/10.1080/00018738300101621
SHIBATA H. Negative thermal quenching curves in photoluminescence of solids [J]. Jpn. J. Appl. Phys., 1998, 37(2): 550-553. doi: 10.1143/jjap.37.550http://dx.doi.org/10.1143/jjap.37.550
ROCCANOVA R, YANGUI A, SEO G, et al. Bright luminescence from nontoxic CsCu2X3 (X = Cl, Br, I) [J]. ACS Mater. Lett., 2019, 1(4): 459-465. doi: 10.1021/acsmaterialslett.9b00274http://dx.doi.org/10.1021/acsmaterialslett.9b00274
0
浏览量
329
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构