1. 电子科技大学中山学院 电子薄膜与集成器件国家重点实验室中山分实验室, 广东 中山 528402
2. 桂林电子科技大学 广西信息材料重点实验室, 广西 桂林 541004
扫 描 看 全 文
王红航, 王云祥, 杨健君等. 二硫化钨纳米片制备及其钙钛矿太阳能电池空穴传输层应用[J]. 发光学报, 2020,41(2): 168-174
WANG Hong-hang, WANG Yun-xiang, YANG Jian-jun etc. Preparation of WS<sub>2</sub> Nanosheets and Their Application for Hole Transport Layer in Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2020,41(2): 168-174
王红航, 王云祥, 杨健君等. 二硫化钨纳米片制备及其钙钛矿太阳能电池空穴传输层应用[J]. 发光学报, 2020,41(2): 168-174 DOI: 10.3788/fgxb20204102.0168.
WANG Hong-hang, WANG Yun-xiang, YANG Jian-jun etc. Preparation of WS<sub>2</sub> Nanosheets and Their Application for Hole Transport Layer in Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2020,41(2): 168-174 DOI: 10.3788/fgxb20204102.0168.
开发新型无机空穴传输层材料是钙钛矿电池实现商业应用的重要挑战之一。本文开展了二硫化钨纳米片制备及其钙钛矿太阳能电池空穴传输层应用研究。采用液相超声剥离法成功制备了WS,2,纳米片,并将其引入钙钛矿太阳能电池中用作空穴传输层。结果表明,当WS,2,纳米片溶液浓度为1 mg/mL时,制备的WS,2,纳米片空穴传输层具有较合适的厚度,并且后续在其上生长的钙钛矿活性层成膜质量高、结晶性能好,电池取得6.3%的光电转换效率。结果证实WS,2,纳米片可作为新型无机空穴传输层材料用于钙钛矿太阳能电池。
Developing novel inorganic hole transport layer materials is one of the major challenges for the commercialization application of the perovskite solar cells. The preparation of WS,2, nanosheets and their application for hole transport layer in perovskite solar cells are investigated in this work. WS,2, nanosheets were prepared by liquid phase supersonic exfoliation method. Then by using solution spin-coating method the WS,2, nanosheets thin films were introduced as the hole transport layer (HTL) material in the planar heterojunction perovskite solar cells. The results indicate when the concentration of WS,2, nanosheet solution is 1 mg/mL, the thickness of the WS,2, nanosheet thin films is suitable for the application to the hole transport layer, and the perovskite active layers grown on them have high film quality and good crystallinity. Finally a photoelectric conversion efficiency of 6.3% is obtained. In this study, we demonstrate an effective new use of WS,2, nanosheets HTL in the perovskite solar cells.
二硫化钨纳米片液相超声剥离法钙钛矿太阳能电池空穴传输层
WS2 nanosheetsliquid phase supersonic exfoliationperovskite solar cellshole transport layer
YAN J F,SAUNDERS B R. Third-generation solar cells:a review and comparison of polymer:fullerene,hybrid polymer and perovskite solar cells[J]. RSC Adv., 2014,4(82):43286-43314.
CHOI M J,KIM Y,LIM H,et al.. Quantum-dot solar cells:tuning solute-redistribution dynamics for scalable fabrication of colloidal quantum-dot optoelectronics[J]. Adv. Mater., 2019,31(32):1970225.
GALAGAN Y. Perovskite solar cells:toward industrial-scale methods[J]. J. Phys. Chem. Lett., 2018,9(15):4326-4335.
CHEN Y C,ZHANG L R,ZHANG Y Z,et al.. Large-area perovskite solar cells-a review of recent progress and issues[J]. RSC Adv., 2018,8(19):10489-10508.
ZHOU C K,LIN H R,LEE S,et al.. Organic-inorganic metal halide hybrids beyond perovskites[J]. Mater. Res. Lett., 2018,6(10):552-569.
KOJIMA A,TESHIMA K,SHIRAI Y,et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.
SALIBA M. Perovskite solar cells must come of age[J]. Science, 2018,359(6374):388-389.
WU R Y,YAO J J,WANG S L,et al.. Ultracompact,well-packed perovskite flat crystals:preparation and application in planar solar cells with high efficiency and humidity tolerance[J]. ACS Appl. Mater. Interfaces, 2019,11(12):11283-11291.
GAO L L,SPANOPOULOS I,KE W J,et al.. Improved environmental stability and solar cell efficiency of (MA,FA) PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy[J]. ACS Energy Lett., 2019,4(7):1763-1769.
NATIONAL RENEWABLE ENERGY LABORATORY(NREL). Best research-cell efficiencies[EB/OL].[2019-09-29]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf
COURTIER N E,CAVE J M,FOSTER J M,et al.. How transport layer properties affect perovskite solar cell performance:insights from a coupled charge transport/ion migration model[J]. Energy Environ. Sci., 2019,12(1):396-409.
HUANG X,GUO H,YANG J,et al.. Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells[J]. Org. Electron., 2016,39:288-295.
KAWANO K,PACIOS R,POPLAVSKYY D,et al.. Degradation of organic solar cells due to air exposure[J]. Sol. Energy Mater. Sol. Cells, 2006,90(20):3520-3530.
JRGENSEN M,NORRMAN K,KREBS F C. Stability/degradation of polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2008,92(7):686-714.
DEJONG M P,VAN IJZENDOORN L J,DE VOIGT M J A. Stability of the interface between indium-tin-oxide and poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett., 2000,77(14):2255-2257.
KHADKA D B,SHIRAI Y,YANAGIDA M,et al.. Unraveling the impacts induced by organic and inorganic hole transport layers in inverted halide perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2019,11(7):7055-7065.
OUYANG D,HUANG Z F,CHOY W C H. Solution-processed metal oxide nanocrystals as carrier transport layers in organic and perovskite solar cells[J]. Adv. Funct. Mater., 2019,29(1):1804660-1-18.
ZHENG J H,LONG H,YUN J S,et al.. Solution-processed,silver-doped NiOx as hole transporting layer for high-efficiency inverted perovskite solar cells[J]. ACS Appl. Energy Mater., 2018,1(2):561-570.
HUANG P,WANG Z W,LIU Y F,et al.. Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25323-25331.
DASGUPTA U,CHATTERJEE S,PAL A J. Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells[J]. Sol. Energy Mater. Sol. Cells, 2017,172:353-360.
BALIS N,STRATAKIS E,KYMAKIS E. Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells[J]. Mater. Today, 2016,19(10):580-594.
VANLE Q,CHOI J Y,KIM S Y. Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells[J]. Flat Chem., 2017,2:54-66.
VANLE Q,NGUYEN T P,KIM S Y. UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells[J]. Phys. Status Solidi, 2014,8(5):390-394.
KWON K C,KIM C,VAN LE Q,et al.. Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices[J]. ACS Nano, 2015,9(4):4146-4155.
KIM Y G,KWON K C,VAN LE Q,et al.. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells[J]. J. Power Sources, 2016,319:1-8.
王云祥,张继华,吴艳花,等. 基于氧化石墨烯空穴传输层的钙钛矿太阳能电池[J]. 光子学报, 2019,48(3):0316001-1-7. WANG Y X,ZHANG J H,WU Y H,et al.. Perovskite solar cells based on graphene oxide hole transport layer[J]. Acta Photon. Sinica, 2019,48(3):0316001-1-7. (in Chinese)
SARKAR A S,PAL S K. Phonon shift in chemically exfoliated WS2 nanosheet[J]. AIP Conf. Proc., 2018,1942(1):090046-1-4.
GUTIRREZ H R,PEREA-LPEZ N,ELAS A L,et al.. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers[J]. Nano Lett., 2013,13(8):3447-3454.
CHAKRABORTY B,MATTE H S S R,SOOD A K,et al.. Layer-dependent resonant Raman scattering of a few layer MoS2[J]. J. Raman Spectrosc., 2013,44(1):92-96.
THRIPURANTHAKA M,KASHID R V,ROUT C S,et al.. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets[J]. Appl. Phys. Lett., 2014,104(8):081911-1-5.
LIU Y,WANG W,WANG Y W,et al.. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries[J]. Nano Energy, 2014,7:25-32.
ZHANG D Q,LIU T T,LIANG S,et al.. An electromagnetic wave absorbing material with potential application prospects-WS2 nanosheets[J]. Integr. Ferroelectr., 2019,200(1):108-116.
RAZA F,PARK J H,LEE H R,et al.. Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets[J]. ACS Catal., 2016,6(5):2754-2759.
SANG Y H,ZHAO Z H,ZHAO M W,et al.. From UV to near-infrared,WS2 nanosheet:a novel photocatalyst for full solar light spectrum photodegradation[J]. Adv. Mater., 2015,27(2):363-369.
IM J H,KIM H S,PARK N G. Morphology-photovoltaic property correlation in perovskite solar cells:one-step versus two-step deposition of CH3NH3PbI3[J]. APL Mater., 2014,2(8):081510-1-8.
KIM G W,SHINDE D V,PARK T. Thickness of the hole transport layer in perovskite solar cells:performance versus reproducibility[J]. RSC Adv., 2015,5(120):99356-99360.
LI L,SHI C W,DENG X L,et al.. High-crystallinity and large-grain CH3NH3PbI3 thin films for efficient TiO2 nanorod array perovskite solar cells[J]. Micro Nano Lett., 2018,13(1):131-134.
0
Views
31
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution