1.中国科学院半导体研究所 照明研发中心, 北京 100083
2.中国科学院大学, 北京 100049
3.北京第三代半导体材料与应用工程技术研究中心, 北京 100083
扫 描 看 全 文
Qi CHEN, Yue YIN, Fang REN, et al. Van der Waals Epitaxy of Ⅲ-Ⅴ Compounds and Their Applications. [J]. Chinese Journal of Luminescence 41(8):899-912(2020)
Qi CHEN, Yue YIN, Fang REN, et al. Van der Waals Epitaxy of Ⅲ-Ⅴ Compounds and Their Applications. [J]. Chinese Journal of Luminescence 41(8):899-912(2020) DOI: 10.37188/fgxb20204108.0899.
Ⅲ-Ⅴ化合物半导体材料体系带隙涵盖范围广、载流子迁移率高,非常适宜用来制备发光二极管、激光器、高电子迁移率晶体管等光电子器件。在异质衬底上进行Ⅲ-Ⅴ化合物的共价外延时,只有外延层与衬底层间的晶格失配度较小时才能获得高质量外延层,而范德华外延已被证实可以有效放宽外延层与衬底层间晶格失配与热失配要求,有利于外延层的应力释放与质量提高,同时也易于外延层从衬底上剥离转移,为制备Ⅲ-Ⅴ化合物基新型光电子器件提供了便利。本文对二维(2D)材料、Ⅲ-Ⅴ化合物在石墨烯上的范德华外延过程以及使用范德华外延制备的Ⅲ-N基光电子器件的各项研究进行了讨论分析,并对其前景进行了展望。
Ⅲ-Ⅴ compound semiconductors have wide band gap and high carrier mobility, making them suitable candidates for light-emitting diodes(LEDs), laser diodes(LDs), high electron mobility transistors(HEMTs) and other optoelectronics. For covalent epitaxy of Ⅲ-Ⅴ compounds on hetero-substrates, high quality epilayer can only be obtained when the lattice mismatch between the substrate and epilayer is negligible. However, van der Waals epitaxy(vdWE) has been proven to be a useful route to relax the requirements of lattice mismatch and thermal mismatch between the epilayer and the substrate. By using vdWE, the stress in epilayer can be sufficiently relaxed, and the epilayer can be easily exfoliated and transferred, which is useful for the Ⅲ-Ⅴ compound-based novel devices fabricating. In this paper, we reviewed and discussed the important progresses on the researches of nitrides vdWE. The potential applications of nitrides vdWE are also prospected.
石墨烯范德华外延Ⅲ-Ⅴ化合物
graphenevan der Waals epitaxyⅢ-Ⅴ compound
NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J].Appl. Phys. Lett., 1994, 64(13):1687-1689.
LI G Q, WANG W L, YANG W J, et al.. GaN-based light-emitting diodes on various substrates:a critical review[J].Rep. Prog. Phys., 2016, 79(5):056501.
KIM Y, CRUZ S S, LEE K, et al.. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J].Nature, 2017, 544(7650):340-343.
MEYAARD D S, CHO J, SCHUBERT E F, et al.. Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes[J].Appl. Phys. Lett., 2013, 103(12):121103-1-4.
WONG W S, SANDS T, CHEUNG N W. Damage-free separation of GaN thin films from sapphire substrates[J].Appl. Phys. Lett., 1998, 72(5):599-601.
KOMA A, SUNOUCHI K, MIYAJIMA T. Fabrication and characterization of heterostructures with subnanometer thickness[J].Microelectron. Eng., 1984, 2(1-3):129-136.
FERNÁNDEZ-GARRIDO S, RAMSTEINER M, GAO G H, et al.. Molecular beam epitaxy of GaN nanowires on epitaxial graphene[J].Nano Lett., 2017, 17(9):5213-5221.
CHUNG K, LEE C H, YI G C. Transferable GaN layers grown on ZnO-Coated graphene layers for optoelectronic devices[J].Science, 2010, 330(6004):655-657.
KONG W, LI H S, QIAO K, et al.. Polarity governs atomic interaction through two-dimensional materials[J].Nat. Mater., 2018, 17(11):999-1004.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.. Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696):666-669.
QI L, XU Y, LI Z Y, et al.. Stress analysis of transferable crack-free gallium nitride microrods grown on graphene/SiC substrate[J].Mater. Lett., 2016, 185:315-318.
PARK S, RUOFF R S. Chemical methods for the production of graphenes[J].Nat. Nanotechnol., 2009, 4(4):217-224.
WINTTERLIN J, BOCQUET M L. Graphene on metal surfaces[J].Surf. Sci., 2009, 603(10-12):1841-1852.
RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al.. Graphene:the new two-dimensional nanomaterial[J].Angew. Chem. Int. Ed., 2009, 48(42):7752-7777.
XU Y, CAO B, LI Z Y, et al.. Growth model of van der Waals epitaxy of films:a case of AlN films on multilayer graphene/SiC[J].ACS Appl. Mater. Interfaces, 2017, 9(50):44001-44009.
HONG Y J, YANG J W, LEE W H, et al.. Van der Waals epitaxial double heterostructure:InAs/single-layer graphene/InAs[J].Adv. Mater., 2013, 25(47):6847-6853.
QI Y, WANG Y Y, PANG Z Q, et al.. Fast growth of strain-free AlN on graphene-buffered sapphire[J].J. Am. Chem. Soc., 2018, 140(38):11935-11941.
CHOI J K, HUH J H, KIM S D, et al.. One-step graphene coating of heteroepitaxial GaN films[J].Nanotechnology, 2012, 23(43):435603-1-8.
CHEN Z L, ZHANG X, DOU Z P, et al.. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer[J].Adv. Mater., 2018, 30(30):1801608.
CHEN X D, LIU Z B, ZHENG C Y, et al.. High-quality and efficient transfer of large-area graphene films onto different substrates[J].Carbon, 2013, 56:271-278.
LIANG X L, SPERLING B A, CALIZO I, et al.. Toward clean and crackless transfer of graphene[J].ACS Nano, 2011, 5(11):9144-9153.
GEIM A K, NOVOSELOV K S. The rise of graphene[J].Nat. Mater., 2007, 6(3):183-191.
SEOL J H, JO I, MOORE A L, et al.. Two-dimensional phonon transport in supported graphene[J].Science, 2010, 328(5975):213-216.
NAIR R R, BLAKE P, GRIGORENKO A N, et al.. Fine structure constant defines visual transparency of graphene[J].Science, 2008, 320(5881):1308.
SUN M L, TANG W C, REN Q Q, et al.. First-principles study of the alkali earth metal atoms adsorption on graphene[J].Appl. Surf. Sci., 2015, 356:668-673.
SEVINÇLI H, TOPSAKAL M, DURGUN E, et al.. Electronic and magnetic properties of 3 d transition-metal atom adsorbed graphene and graphene nanoribbons[J].Phys. Rev. B, 2008, 77(19):195434-1-7.
CHEN Z L, LIU Z Q, WEI T B, et al.. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene[J].Adv. Mater., 2019, 31(23):1807345-1-8.
SHIN Y J, WANG Y Y, HUANG H, et al.. Surface-energy engineering of graphene[J].Langmuir, 2010, 26(6):3798-3802.
REN F, YIN Y, WANG Y Y, et al.. Direct growth of AlGaN nanorod LEDs on graphene-covered Si[J].Materials, 2018, 11(12):2372-1-9.
LI Y, ZHAO Y, WEI T B, et al.. Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film[J].Jpn. J. Appl. Phys., 2017, 56(8):085506.
WANG Y Y, DHEERAJ D, LIU Z Q, et al.. AlGaN nanowires grown on SiO2/Si (100) using graphene as a buffer layer[J].Cryst. Growth Des., 2019, 19(10):5516-5522.
GUPTA P, RAHMAN A A, SUBRAMANIAN S, et al.. Layered transition metal dichalcogenides:promising near-lattice-matched substrates for GaN growth[J].Sci. Rep., 2016, 6:23708-1-8.
ZHAO C, NG T K, TSENG C C, et al.. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters[J].RSC Adv., 2017, 7(43):26665-26672.
YIN Y, REN F, WANG Y Y, et al.. Direct van der Waals epitaxy of crack-free AlN thin film on epitaxial WS2[J].Materials, 2018, 11(12):2464-1-9.
ALASKAR Y, ARAFIN S, WICKRAMARATNE D, et al.. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer[J].Adv. Funct. Mater., 2014, 24(42):6629-6638.
FERREYRA R A, ZHU C Y, TEKE A, et al.. Group Ⅲ nitrides[M]. KASAP S, CAPPER P.Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2017.
CHUNG K, YOO H, HYUN J K, et al.. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots[J].Adv. Mater., 2016, 28(35):7688-7694.
SHIH C J, STRANO M S, BLANKSCHTEIN D. Wetting translucency of graphene[J].Nat. Mater., 2013, 12(10):866-869.
RAFIEE J, MI X, GULLAPALLI H, et al.. Wetting transparency of graphene[J].Nat. Mater., 2012, 11(3):217-222.
0
Views
48
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution