1.国科学院福建物质结构研究所 结构化学国家重点实验室, 福建 福州 350002
扫 描 看 全 文
Qing-fu SUN, Xiao-zhen LI. When Rare Earth Comes Across Metal-organic Cages: A New Luminescent Supramolecular System. [J]. Chinese Journal of Luminescence 41(7):770-774(2020)
Qing-fu SUN, Xiao-zhen LI. When Rare Earth Comes Across Metal-organic Cages: A New Luminescent Supramolecular System. [J]. Chinese Journal of Luminescence 41(7):770-774(2020) DOI: 10.37188/fgxb20204107.0770.
稀土超分子体系由于其独具特色的结构和光学特性,近年来受到了广泛的关注。本文回顾了稀土超分子体系的发展进程,聚焦该领域目前取得的进展,并结合发光材料的发展需求展望了这一新型体系未来面临的挑战和发展契机。
Rare earth supramolecular systems have received increasing attention recently, due to their unique structural features and excellent luminescent properties. We present here a short review on the history of mononuclear rare earth complexes and the current achievements of polynuclear rare earth supramolecular systems, respectively. By looking into the future challenges and opportunities, we look forward to the booming development of this young field.
稀土发光超分子多组分配合物
lanthanide luminescencesupramolecularmulti-componentcoordination complex
BUNZLI J-C G, PIGUET C. Taking advantage of luminescent lanthanide ions[J]. Chem. Soc. Rev., 2005, 34(12):1048-1077.
陈学元, 涂大涛, 郑伟.无机纳米发光材料研究展望:如何走出自己的舒适区?[J].发光学报, 2020, 41(5):498-501.
CHEN X Y, TU D T, ZHENG W. Perspectives for researches in inorgic luminescent nanomaterials:how to move out of current comfort zones?[J]. Chin. J. Lumin., 2020, 41(5):498-501. (in Chinese)
CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination:self-assembly of finite two- and three-dimensional ensembles[J]. Chem. Rev., 2011, 111(11):6810-6918.
MOORE E G, SAMUEL A P, RAYMOND K N. From antenna to assay:lessons learned in lanthanide luminescence[J]. Accounts Chem. Res., 2009, 42(4):542-552.
BUNZLI J-C G, PIGUET C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies[J]. Chem. Rev., 2002, 102(6):1897-1928.
ALPHA B, LEHN J-M, MATHIS G. Energy transfer luminescence of europium(Ⅲ) and terbium(Ⅲ) cryptates of macrobicyclic polypyridine ligands[J]. Angew. Chem., Int. Ed., 1987, 26(3):266-267.
MONTGOMERY C P, MURRAY B S, NEW E J, et al. Cell-penetrating metal complex optical probes:targeted and responsive systems based on lanthanide luminescence[J]. Accounts Chem. Res., 2009, 42(7):925-937.
XU J, CORNEILLIE T M, MOORE E G, et al. Octadentate cages of Tb(Ⅲ) 2-hydroxyisophthalamides:a new standard for luminescent lanthanide labels[J]. J. Am. Chem. Soc., 2011, 133(49):19900-19910.
WAHSNER J, GALE E M, RODRIGUEZ-RODRIGUEZ A, et al. Chemistry of MRI contrast agents:current challenges and new frontiers[J]. Chem. Rev., 2019, 119(2):957-1057.
WERNER E J, DATTA A, JOCHER C J, et al. High-relaxivity MRI contrast agents:where coordination chemistry meets medical imaging[J]. Angew. Chem., Int. Ed., 2008, 47(45):8568-8580.
PIGUET C, WILLIAMS A F, BERNARDINELLI G. The first self-assembled dinuclear triple-helical lanthanide complex:synthesis and structure[J]. Angew. Chem., Int. Ed., 1992, 31(12):1622-1624.
PIGUET C, BUNZLI J-C G, BERNARDINELLI G, et al. Lanthanide podates with predetermined structural and photophysical properties:strongly luminescent self-assembled heterodinuclear d-f complexes with a segmental ligand containing heterocyclic imines and carboxamide binding units[J]. J. Am. Chem. Soc., 1996, 118(28):6681-6697.
ABOSHYAN-SORGHO L, NOZARY H, AEBISCHER A, et al. Optimizing millisecond time scale near-infrared emission in polynuclear chrome(Ⅲ)-lanthanide(Ⅲ) complexes[J]. J. Am. Chem. Soc., 2012, 134(30):12675-12684.
ABOSHYAN-SORGHO L, BESNARD C, PATTISON P, et al. Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex[J]. Angew. Chem., Int. Ed., 2011, 50(18):4108-4112.
WANG J, HE C, WU P, et al. An amide-containing metal-organic tetrahedron responding to a spin-trapping reaction in a fluorescent enhancement manner for biological imaging of NO in living cells[J]. J. Am. Chem. Soc., 2011, 133(32):12402-12405.
JIAO Y, WANG J, WU P, et al. Cerium-based M4L4 tetrahedra as molecular flasks for selective reaction prompting and luminescent reaction tracing[J]. Chem.-Eur. J., 2014, 20(8):2224-2231.
SAHOO J, ARUNACHALAM R, SUBRAMANIAN P S, et al. Coordinatively unsaturated lanthanide(Ⅲ) helicates:luminescence sensors for adenosine monophosphate in aqueous media[J]. Angew. Chem., Int. Ed., 2016, 55(33):9625-9629.
LIU C L, ZHANG R L, LIN C S, et al. Intra-ligand charge transfer sensitization on self-assembled euro-pium tetrahedral cage leads to dual selective luminescent sensing toward anion and cation[J]. J. Am. Chem. Soc., 2017, 139(36):12474-12479.
GUO X Q, ZHOU L P, CAI L X, et al. Self-assembled bright luminescent lanthanide-organic polyhedra for ratiometric temperature sensing[J]. Chem.-Eur. J., 2018, 24(27):6936-6940.
WONG H Y, LO W S, YIM K H, et al. Chirality and chiroptics of lanthanide molecular and supramolecular assemblies[J]. Chem, 2019, 5(12):3058-3095.
YAN L L, TAN C H, ZHANG G L, et al. Stereocontrolled self-assembly and self-sorting of luminescent europium tetrahedral cages[J]. J. Am. Chem. Soc., 2015, 137(26):8550-8555.
LI X Z, ZHOU L P, YAN L L, et al. Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes[J]. J. Am. Chem. Soc., 2017, 139(24):8237-8244.
ZHU Q Y, ZHOU L P, CAI L X, et al. Chiral auxiliary and induced chiroptical sensing with 5d/4f lanthanide-organic macrocycles[J]. Chem. Commun., 2020, 56(19):2861-2864.
LI X Z, ZHOU L P, HU, S J, et al. Metal ion adaptive self-assembly of photoactive lanthanide-based supramolecular hosts[J]. Chem. Commun., 2020, 56(32):4416-4419.
WANG Z, ZHOU L P, ZHAO T H, et al. Hierarchical self-assembly and chiroptical studies of luminescent 4d-4f cages[J]. Inorg. Chem., 2018, 57(13):7982-7992.
ZHOU Y, LI H, ZHU T, et al. A highly luminescent chiral tetrahedral Eu4 L4(L ')4 cage:chirality induction, chirality memory and circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019, 141(50):19634-19643.
0
Views
62
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution