浏览全部资源
扫码关注微信
1.中国科学院半导体研究所 宽禁带半导体研发中心, 北京 100083
2.中国科学院大学 材料科学与光电技术学院, 北京 100049
Published:25 August 2024,
Received:10 May 2024,
Revised:19 May 2024,
移动端阅览
蒋宗霖,闫丹,张宁等.NH3/N2复合热退火技术改善高浓度Mg掺杂GaN材料性能[J].发光学报,2024,45(08):1325-1333.
JIANG Zonglin,YAN Dan,ZHANG Ning,et al.Enhanced Properties of Heavily Mg-doped GaN by Combining Thermal Annealing Processes in NH3/N2[J].Chinese Journal of Luminescence,2024,45(08):1325-1333.
蒋宗霖,闫丹,张宁等.NH3/N2复合热退火技术改善高浓度Mg掺杂GaN材料性能[J].发光学报,2024,45(08):1325-1333. DOI: 10.37188/CJL.20240130.
JIANG Zonglin,YAN Dan,ZHANG Ning,et al.Enhanced Properties of Heavily Mg-doped GaN by Combining Thermal Annealing Processes in NH3/N2[J].Chinese Journal of Luminescence,2024,45(08):1325-1333. DOI: 10.37188/CJL.20240130.
研究了NH
3
/N
2
复合热退火技术对高浓度Mg掺杂GaN材料晶体质量、发光性质及导电性能的影响。实验结果表明,相较于传统N
2
氛围高温热退火后处理工艺而言,NH
3
氛围高温热退火后处理工艺可以改善高浓度Mg掺杂GaN材料的晶体质量,同时可以增进Mg受主原子的有效掺杂,使得其光致发光谱中蓝光峰强度增强。采用NH
3
氛围高温热退火结合N
2
氛围低温热退火后处理工艺复合技术制备得到的高浓度Mg掺杂GaN材料内部背景电子浓度显著降低。这是由于在NH
3
氛围高温热退火后处理工艺中,NH
3
的热分解产物能够有效降低材料内N空位和间隙Ga原子等浅施主型缺陷浓度,最终改善高浓度Mg掺杂GaN材料的导电性能。
The effect of a novel post-growth process,
i.e
. high-temperature thermal annealing process in NH
3
, on the crystal quality, luminescence property, and electrical conductivity of the heavily Mg-doped GaN was studied. The experimental results showed that, compared with the traditional high-temperature annealing process in N
2
, the high-temperature thermal annealing process in NH
3
can improve crystal quality in the heavily Mg-doped GaN, while promote the further effective doping of Mg acceptors, resulting in an enhancement of the intensity of the blue luminescence band in its photoluminescence spectra. The heavily Mg-doped GaN with significantly lower background electron concentration was obtained by combining high-temperature thermal annealing process in NH
3
with low-temperature thermal annealing process in N
2
. This is because that the thermal decomposition products of NH
3
in the post-growth process can effectively reduce the concentration of shallow donor-type defects such as N vacancies and interstitial Ga atoms in the material, ultimately improving electrical conductivity of the heavily Mg-doped GaN.
氮化镓Mg掺杂热退火工艺氨气
gallium nitrideMg dopedthermal annealingammonia
MOUSTAKAS T D, PAIELLA R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz [J]. Rep. Progr. Phys., 2017, 80(10): 106501. doi: 10.1088/1361-6633/aa7bb2http://dx.doi.org/10.1088/1361-6633/aa7bb2
严嘉彬, 孙志航, 房力, 等. 基于外延层转移的超薄垂直结构深紫外LED [J]. 发光学报, 2023, 44(2): 321-327. doi: 10.37188/CJL.20220305http://dx.doi.org/10.37188/CJL.20220305
YAN J B, SUN Z H, FANG L, et al. An ultra-thin vertical deep ultraviolet LED realized by epilayer transfer [J]. Chin. J. Lumin., 2023, 44(2): 321-327. (in Chinese). doi: 10.37188/CJL.20220305http://dx.doi.org/10.37188/CJL.20220305
AMANO H, KITO M, HIRAMATSU K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI) [J]. Jpn. J. Appl. Phys., 1989, 28(12A): L2112-L2114. doi: 10.1143/jjap.28.l2112http://dx.doi.org/10.1143/jjap.28.l2112
NAKAMURA S, MUKAI T, SENOH M, et al. Thermal annealing effects on P-type Mg-doped GaN films [J]. Jpn. J. Appl. Phys., 1992, 31(2B): L139-L142. doi: 10.1143/jjap.31.l139http://dx.doi.org/10.1143/jjap.31.l139
KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides [J]. Nat. Photon., 2008, 2(2): 77-84. doi: 10.1038/nphoton.2007.293http://dx.doi.org/10.1038/nphoton.2007.293
LIANG Y H, TOWE E. Progress in efficient doping of high aluminum-containing group III-nitrides [J]. Appl. Phys. Rev., 2018, 5(1): 011107. doi: 10.1063/1.5009349http://dx.doi.org/10.1063/1.5009349
KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nat. Photon., 2019, 13(4): 233-244. doi: 10.1038/s41566-019-0359-9http://dx.doi.org/10.1038/s41566-019-0359-9
CHEN K, ZHAO J G, DING Y, et al. Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films [J]. Chin. Phys. B, 2023, 33(1): 016801. doi: 10.1088/1674-1056/acdc0bhttp://dx.doi.org/10.1088/1674-1056/acdc0b
NAM K B, NAKARMI M L, LI J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence [J]. Appl. Phys. Lett., 2003, 83(5): 878-880. doi: 10.1063/1.1594833http://dx.doi.org/10.1063/1.1594833
OBLOH H, BACHEM K H, KAUFMANN U, et al. Self-compensation in Mg doped p-type GaN grown by MOCVD [J]. J. Cryst. Growth, 1998, 195(1-4): 270-273. doi: 10.1016/s0022-0248(98)00578-8http://dx.doi.org/10.1016/s0022-0248(98)00578-8
MATTILA T, NIEMINEN R M. Point-defect complexes and broadband luminescence in GaN and AlN [J]. Phys. Rev. B, 1997, 55(15): 9571-9576. doi: 10.1103/physrevb.55.9571http://dx.doi.org/10.1103/physrevb.55.9571
REBOREDO F A, PANTELIDES S T. Novel defect complexes and their role in the p-type doping of GaN [J]. Phys. Rev. Lett., 1999, 82(9): 1887-1890. doi: 10.1103/physrevlett.82.1887http://dx.doi.org/10.1103/physrevlett.82.1887
LYONS J L, VAN DE WALLE C G. Computationally predicted energies and properties of defects in GaN [J]. npj Comput. Mater., 2017, 3(1): 12. doi: 10.1038/s41524-017-0014-2http://dx.doi.org/10.1038/s41524-017-0014-2
LYONS J L, JANOTTI A, VAN DE WALLE C G. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors [J]. J. Appl. Phys., 2014, 115(1): 012014. doi: 10.1063/1.4838075http://dx.doi.org/10.1063/1.4838075
HORITA M, TAKASHIMA S, TANAKA R, et al. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations [J]. Jpn. J. Appl. Phys., 2017, 56(3): 031001. doi: 10.7567/JJAP.56.031001http://dx.doi.org/10.7567/JJAP.56.031001
MOHAMMAD S N, BOTCHKAREV A E, SALVADOR A, et al. Proposed explanation of the anomalous doping characteristics of Ⅲ-Ⅴ nitrides [J]. Philos. Mag. B, 1997, 76(2): 131-143. doi: 10.1080/01418639708241083http://dx.doi.org/10.1080/01418639708241083
OKUMURA H, MARTIN D, MALINVERNI M, et al. Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy [J]. Appl. Phys. Lett., 2016, 108(7): 072102. doi: 10.1063/1.4942369http://dx.doi.org/10.1063/1.4942369
YANG J, ZHAO D G, JIANG D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films [J]. J. Appl. Phys., 2014, 115(16): 163704. doi: 10.1063/1.4873957http://dx.doi.org/10.1063/1.4873957
NAKAMURA S. Nobel lecture: background story of the invention of efficient blue InGaN light emitting diodes [J]. Rev. Mod. Phys., 2015, 87(4): 1139-1151. doi: 10.1103/revmodphys.87.1139http://dx.doi.org/10.1103/revmodphys.87.1139
ZHANG C Y, ZHOU X L, KONG T, et al. Thermo-plasmonic assisted structural optimization of micro/nanocrystals based on single-particle spectroscopy [J]. J. Mater. Chem. C, 2024, 12(8): 2849-2858. doi: 10.1039/d3tc03739hhttp://dx.doi.org/10.1039/d3tc03739h
NAKAMURA S, IWASA N, SENOH M, et al. Hole compensation mechanism of P-type GaN films [J]. Jpn. J. Appl. Phys., 1992, 31(5R): 1258-1266. doi: 10.1143/jjap.31.1258http://dx.doi.org/10.1143/jjap.31.1258
NAGAMORI M, ITO S, SAITO H, et al. Optimum rapid thermal activation of Mg-doped p-type GaN [J]. Jpn. J. Appl. Phys., 2008, 47(4S): 2865-2867. doi: 10.1143/jjap.47.2865http://dx.doi.org/10.1143/jjap.47.2865
LIN C F, CHENG H C, CHANG C C, et al. Properties of Mg activation in thermally treated GaN∶Mg films [J]. J. Appl. Phys., 2000, 88(11): 6515-6518. doi: 10.1063/1.1308097http://dx.doi.org/10.1063/1.1308097
ARIFF A, ZAINAL N, HASSAN Z. Annealing effects on polycrystalline GaN using nitrogen and ammonia ambients [J]. Superlattices Microstruct., 2016, 97: 193-201. doi: 10.1016/j.spmi.2016.05.005http://dx.doi.org/10.1016/j.spmi.2016.05.005
GRECZYNSKI G, HULTMAN L. A step-by-step guide to perform X-ray photoelectron spectroscopy [J]. J. Appl. Phys., 2022, 132(1): 011101. doi: 10.1063/5.0123879http://dx.doi.org/10.1063/5.0123879
NI R X, CHEN X, YAN J C, et al. Reducing stimulated emission threshold power density of AlGaN/AlN multiple quantum wells by Nano-trench-patterned AlN template [J]. J. Alloys Compd., 2019, 777: 344-349. doi: 10.1016/j.jallcom.2018.10.402http://dx.doi.org/10.1016/j.jallcom.2018.10.402
METZGER T, HÖPLER R, BORN E, et al. Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry [J]. Philos. Mag. A, 1998, 77(4): 1013-1025. doi: 10.1080/014186198254164http://dx.doi.org/10.1080/014186198254164
BILLEB A, GRIESHABER W, STOCKER D, et al. Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures [J]. Appl. Phys. Lett., 1997, 70(21): 2790-2792. doi: 10.1063/1.119060http://dx.doi.org/10.1063/1.119060
HUMS C, FINGER T, HEMPEL T, et al. Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate [J]. J. Appl. Phys., 2007, 101(3): 033113. doi: 10.1063/1.2434010http://dx.doi.org/10.1063/1.2434010
DEMCHENKO D O, DIALLO I C, RESHCHIKOV M A. Magnesium acceptor in gallium nitride. II. Koopmans-tuned Heyd-Scuseria-Ernzerhof hybrid functional calculations of its dual nature and optical properties [J]. Phys. Rev. B, 2018, 97(20): 205205. doi: 10.1103/physrevb.97.205205http://dx.doi.org/10.1103/physrevb.97.205205
XU C L, LIU K Z, YU Z H, et al. 193 nm laser annealing on p-GaN with enhanced hole concentration and wall-plug-efficiency in deep ultraviolet LED [J]. Appl. Phys. Lett., 2023, 123(18): 182103. doi: 10.1063/5.0169647http://dx.doi.org/10.1063/5.0169647
MAHBOOB I, VEAL T D, MCCONVILLE C F, et al. Intrinsic electron accumulation at clean InN surfaces [J]. Phys. Rev. Lett., 2004, 92(3): 036804. doi: 10.1103/physrevlett.92.036804http://dx.doi.org/10.1103/physrevlett.92.036804
GUO L, WANG X Q, ZHENG X T, et al. Revealing of the transition from n- to p-type conduction of InN∶Mg by photoconductivity effect measurement [J]. Sci. Rep., 2014, 4(1): 4371. doi: 10.1038/srep04371http://dx.doi.org/10.1038/srep04371
PONCÉ S, JENA D, GIUSTINO F. Hole mobility of strained GaN from first principles [J]. Phys. Rev. B, 2019, 100(8): 085204. doi: 10.1103/physrevb.100.085204http://dx.doi.org/10.1103/physrevb.100.085204
CHEN L C, CHEN F R, KAI J J, et al. Microstructural investigation of oxidized Ni/Au Ohmic contact to p-type GaN [J]. J. Appl. Phys., 1999, 86(7): 3826-3832. doi: 10.1063/1.371294http://dx.doi.org/10.1063/1.371294
HO J K, JONG C S, CHIU C C, et al. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films [J]. J. Appl. Phys., 1999, 86(8): 4491-4497. doi: 10.1063/1.371392http://dx.doi.org/10.1063/1.371392
王雪, 刘乃鑫, 王兵, 等. AlGaN基深紫外LED的NiAu透明电极及其接触特性 [J]. 发光学报, 2023, 44(5): 898-903. doi: 10.37188/cjl.20220385http://dx.doi.org/10.37188/cjl.20220385
WANG X, LIU N X, WANG B, et al. Ohmic contact characteristics of AlGaN-based deep-ultraviolet light-emitting-diodes with NiAu transparent electrode [J]. Chin. J. Lumin., 2023, 44(5): 898-903. (in Chinese). doi: 10.37188/cjl.20220385http://dx.doi.org/10.37188/cjl.20220385
GRODZICKI M, MAZUR P, CISZEWSKI A. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment [J]. Appl. Surf. Sci., 2018, 440: 547-552. doi: 10.1016/j.apsusc.2018.01.097http://dx.doi.org/10.1016/j.apsusc.2018.01.097
MAHAT M R, TALIK N A, RAHMAN M NABD, et al. Electronic surface, optical and electrical properties of p- GaN activated via in-situ MOCVD and ex-situ thermal annealing in InGaN/GaN LED [J]. Mater. Sci. Semicond. Process., 2020, 106: 104757. doi: 10.1016/j.mssp.2019.104757http://dx.doi.org/10.1016/j.mssp.2019.104757
LIN Y J, CHU Y L. Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN [J]. J. Appl. Phys., 2005, 97(10): 104904. doi: 10.1063/1.1894580http://dx.doi.org/10.1063/1.1894580
MOON Y T, KIM D J, PARK J S, et al. Recovery of dry-etch-induced surface damage on Mg-doped GaN by NH3 ambient thermal annealing [J]. J. Vacuum Sci. Technol. B, 2004, 22(2): 489-491. doi: 10.1116/1.1645882http://dx.doi.org/10.1116/1.1645882
ZHAO Y F, GAO H W, HUANG R, et al. Precise determination of surface band bending in Ga-polar n-GaN films by angular dependent X-ray photoemission spectroscopy [J]. Sci. Rep., 2019, 9(1): 16969. doi: 10.1038/s41598-019-53236-9http://dx.doi.org/10.1038/s41598-019-53236-9
GRODZICKI M. Properties of thin film-covered GaN(0001) surfaces [J]. Mater. Proc., 2020, 2(1): 30.
BUI K M, IWATA J I, KANGAWA Y, et al. Reaction pathway of surface-catalyzed ammonia decomposition and nitrogen incorporation in epitaxial growth of gallium nitride [J]. J. Phys. Chem. C, 2018, 122(43): 24665-24671. doi: 10.1021/acs.jpcc.8b05682http://dx.doi.org/10.1021/acs.jpcc.8b05682
0
Views
90
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution