1.闽江学院 物理与电子信息工程学院, 福建 福州 350108
2.重庆邮电大学 光电工程学院, 重庆 400065
扫 描 看 全 文
王建彬,唐孝生,周笔等.PCE10显著提升三元倍增型有机光电探测器红光与近红外光探测能力[J].发光学报,
WANG Jian-bin,TANG Xiao-sheng,ZHOU Bi,et al.PCE10 Significantly Improves Red and Near-infrared Light Detection Capabilities of Ternary Photomultiplication-Type Organic Photodetectors[J].Chinese Journal of Luminescence,
王建彬,唐孝生,周笔等.PCE10显著提升三元倍增型有机光电探测器红光与近红外光探测能力[J].发光学报, DOI:10.37188/CJL.20230257
WANG Jian-bin,TANG Xiao-sheng,ZHOU Bi,et al.PCE10 Significantly Improves Red and Near-infrared Light Detection Capabilities of Ternary Photomultiplication-Type Organic Photodetectors[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230257
近红外光探测能力强的光电探测器更有利于检测人体心率,而且探测范围覆盖红光与近红外光的宽带响应光电探测器能用于检测血氧饱和度,因此提升宽带响应光电探测器的红光与近红外光探测能力具有重要意义。然而,经典的二元体异质结宽带响应倍增型有机光电探测器通常由于活性层中给体/受体比例差异较大,导致器件对红光与近红外光的响应能力较弱甚至没有响应。本文通过用少量给体材料PCE10替代活性层P3HT:IEICO-4F(100:1)中部分P3HT的方法,制备结构为ITO/PEDOT:PSS/P3HT:PCE10:IEICO-4F(90:10:1)/Al的体异质结三元倍增型有机光电探测器。-20 V偏压下,三元器件获得紫外到近红外(330-810 nm)响应较均匀的EQE光谱,并且器件在660和810 nm处的EQEs(134,000%和147,000%)是相同条件下二元器件的78和106倍,相应的探测灵敏度(5.4×10,13,和7.27×10,13, Jones)分别提升了26和36倍。三元器件的红光和近红外光探测能力得到显著提升,为制备用于人体心率与血氧饱和度检测的高性能光电探测器提供策略。
Photodetectors with strong near-infrared response are more conducive to detecting human heart rate. Furthermore, broadband photodetectors with a response range covering both red and near-infrared region can be used to detect blood oxygen saturation. Therefore, improving the red and near-infrared response capabilities of broadband photodetectors is of great significance. However, classic binary bulk-heterojunction broadband photomultiplication-type organic photodetectors typically exhibit weak or even no response to red and near-infrared light due to significant ratio-difference between donor and acceptor in the active layer. This paper fabricates ternary bulk-heterojunction photomultiplication-type organic photodetectors with a structure of ITO/PEDOT:PSS/P3HT:PCE10:IEICO-4F (90:10:1)/Al by using a small amount of donor material PCE10 to replace some of P3HT in the active layer of P3HT:IEICO-4F (100:1). Under -20 V bias, the ternary devices obtain a relatively even EQE spectrum from ultraviolet to near-infrared (330-810 nm), with the EQEs at 660 and 810 nm (134,000% and 147,000%) being 78 and 106 times as large as those of the binary devices under same conditions, and corresponding detectivity values (5.4×10,13, and 7.27 × 10,13, Jones) being increased by 26 and 36 times, respectively. The red and near-infrared light detection capabilities of ternary devices have been significantly improved, providing a strategy for fabricating high-performance photodetectors to detect human heart rate and blood oxygen saturation.
近红外心率血氧饱和度体异质结倍增型有机光电探测器三元
Near-infraredheart rateblood oxygen saturationbulk-heterojunctionphotomultiplication-type organic photodetectorternary
XU Y L, LIN Q Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives [J]. Appl. Phys. Rev., 2020, 7 (1): 011315. doi: 10.1063/1.5144840http://dx.doi.org/10.1063/1.5144840
ZHAO Z J, Xu C Y, NIU L B, et al. Recent progress on broadband organic photodetectors and their applications [J]. Laser Photonics Rev., 2020, 14 (11): 2000262. doi: 10.1002/lpor.202000262http://dx.doi.org/10.1002/lpor.202000262
YANG D Z, MA D G. Development of organic semiconductor photodetectors: from mechanism to applications [J]. Adv. Opt. Mater., 2019, 7 (1): 1800522. doi: 10.1002/adom.201800522http://dx.doi.org/10.1002/adom.201800522
LAN Z J, LEE M H, ZHU F R. Recent advances in solution-processable organic photodetectors and applications in flexible electronics [J]. Adv. Intell. Syst., 2022, 4 (3): 2100167. doi: 10.1002/aisy.202100167http://dx.doi.org/10.1002/aisy.202100167
LIU Z Y, YIN Z G, LI J, et al. Transparent polymer nanoheterostructure films for flexible low-power organic transistors with high mobility, decent photostability, and ultralong-term air stability [J]. Mater. Today Phys., 2023, 37: 101206. doi: 10.1016/j.mtphys.2023.101206http://dx.doi.org/10.1016/j.mtphys.2023.101206
李昊昱,张承君,杨青,等. 激光制备液态金属基柔性电子及其应用 [J]. 中国激光, 2022, 49 (10): 1002505. (in Chinese). doi: 10.3788/CJL202249.1002505http://dx.doi.org/10.3788/CJL202249.1002505
LI H Y, ZHANG C J, YANG Q, et al. Liquid metal based flexible electronics fabricated by laser and its applications [J]. Chinese Journal of Lasers,2022, 49 (10): 1002505. doi: 10.3788/CJL202249.1002505http://dx.doi.org/10.3788/CJL202249.1002505
LEE H, KIM E, LEE Y, et al. Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch [J]. Sci. Adv., 2018, 4 (11): eaas9530. doi: 10.1126/sciadv.aas9530http://dx.doi.org/10.1126/sciadv.aas9530
WEI Y N, CHEN H, LIU T H, et a.. Self-powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction [J]. Adv. Funct. Mater., 2021, 31 (52): 2106326. doi: 10.1002/adfm.202106326http://dx.doi.org/10.1002/adfm.202106326
ZHANG L Z, YANG T B, SHAN L, et al. Toward highly sensitive polymer photodetectors by molecular engineering [J]. Adv. Mater., 2015, 27 (41): 6496-6503. doi: 10.1002/adma.201502267http://dx.doi.org/10.1002/adma.201502267
SU Z S, HOU F H, WANG X, et al. High-performance organic small-molecule panchromatic photodetectors [J]. ACS Appl. Mater. Interfaces, 2015, 7 (4): 2529-2534. doi: 10.1021/am5074479http://dx.doi.org/10.1021/am5074479
GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm [J]. Science, 2009, 325 (5948), 1665-1667. doi: 10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
LEE H, NAM S, KWON H, et al. Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing [J]. J. Mater. Chem. C, 2015, 3 (7), 1513-1520. doi: 10.1039/c4tc02194khttp://dx.doi.org/10.1039/c4tc02194k
LI L L, ZHANG F J, WANG WW, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500% [J]. ACS Appl. Mater. Interfaces, 2015, 7 (10): 5890-5897. doi: 10.1021/acsami.5b00041http://dx.doi.org/10.1021/acsami.5b00041
LI L L, ZHANG F J, Wang J, et al. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication [J]. Sci. Rep. 2015, 5 (1): 9181. doi: 10.1038/srep09181http://dx.doi.org/10.1038/srep09181
WANG J B, ZHENG Q D. Enhancing the performance of photomultiplication-type organic photodetectorsusing solution-processed ZnO as an interfacial layer [J]. J. Mater. Chem. C, 2019, 7 (6): 1544-1550. doi: 10.1039/c8tc04962ahttp://dx.doi.org/10.1039/c8tc04962a
GUO D C, YANG L Q, ZHAO J C, et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000% [J]. Mater. Horiz., 2021, 8 (8): 2293-2302. doi: 10.1039/d1mh00776ahttp://dx.doi.org/10.1039/d1mh00776a
王建彬,曾夏辉,周笔,等. 基于非富勒烯受体IEICO-4F的倍增型有机光电探测器 [J]. 华南师范大学学报(自然科学版), 2021, 54 (3): 1-7.
WANG J B, ZHOU B, ZENG X H, et al. Photomultiplication-type organic photodetectors based on non-fullerene acceptor IEICO-4F [J]. Journal of South China Normal University (Natural Science Edition), 2021, 54 (3): 1-7. (in Chinese)
王建彬,唐孝生,周笔,等. 基于电场调控的高性能紫外无机-有机复合结构光电探测器 [J]. 发光学报, 2022, 43 (1): 103-109. doi: 10.37188/cjl.20210317http://dx.doi.org/10.37188/cjl.20210317
WANG J B, TANG X S, ZHOU B, et al. High-performance ultraviolet inorganic-organic composite structure photodetectors based on electric field control [J]. Chin. J. Lumin., 2022, 43 (1), 103-109. (in Chinese). doi: 10.37188/cjl.20210317http://dx.doi.org/10.37188/cjl.20210317
ZHAO Z J, LIU B Q, XIE C L, et al. Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing [J]. Science China Chemistry, 2021, 64 (8): 1302-1309. doi: 10.1007/s11426-021-1008-9http://dx.doi.org/10.1007/s11426-021-1008-9
GUO D C, YANG L Q, LI J, et al. Panchromatic photomultiplication-type organic photodetectors with planar/bulk heterojunction structure [J]. Science China Materials, 2023, 66: 1172-1179. doi: 10.1007/s40843-022-2241-3http://dx.doi.org/10.1007/s40843-022-2241-3
WANG W B, ZANG F J, LI L L, et al. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement [J]. ACS Appl. Mater. Interfaces, 2015, 7 (40): 22660-22668. doi: 10.1021/acsami.5b07522http://dx.doi.org/10.1021/acsami.5b07522
BAI H T, WANG Y F, CHENG P, et al. An electron acceptor based on indacenodithiophene and 1, 1-dicyanomethylene-3-indanone for fullerene-free organic solar cells [J]. J. Mater. Chem. A, 2015, 3 (5): 1910-1914. doi: 10.1039/c4ta06004khttp://dx.doi.org/10.1039/c4ta06004k
WU Y, BAI H T, WANG Z Y, et al. A planar electron acceptor for efficient polymer solar cells [J]. Energ. Environ. Sci., 2015, 8 (11): 3215-3221. doi: 10.1039/c5ee02477chttp://dx.doi.org/10.1039/c5ee02477c
LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Adv. Mater., 2015, 27 (7): 1170-1174. doi: 10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
HOLLIDAY S, ASHRAF R S, AWADSWORTHet al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor [J]. Nat. Commun., 2016, 7 (1): 11585. doi: 10.1038/ncomms11585http://dx.doi.org/10.1038/ncomms11585
YAO H F, CUI Y, YU R N, et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap [J]. Angew. Chem. Int. Ed., 2017, 56 (11): 3045-3049. doi: 10.1002/anie.201610944http://dx.doi.org/10.1002/anie.201610944
WANG W B, ZHANG F J, BAI H T, et al. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response [J]. Nanoscale, 2016, 8 (10): 5578-5586. doi: 10.1039/c6nr00079ghttp://dx.doi.org/10.1039/c6nr00079g
ZHANG Y J, DENG D, LU K, et al. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells [J]. Adv. Mater., 2015, 27 (6): 1071-1076. doi: 10.1002/adma.201404902http://dx.doi.org/10.1002/adma.201404902
ZHU T, ZHENG L Y P, XIAO Z, et al. Functionality of non-fullerene electron acceptors in ternary organic solar cells [J]. Sol. RRL, 2019, 3 (12): 1900322. doi: 10.1002/solr.201900322http://dx.doi.org/10.1002/solr.201900322
AN Q S, ZHANG F J, LI L L, et al. Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules [J]. ACS Appl. Mater. Interfaces, 2014, 6 (9): 6537-6544. doi: 10.1021/am500074shttp://dx.doi.org/10.1021/am500074s
MA X L, ZENG A P, GAO J H, et al. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6-1O as acceptor [J]. Natl. Sci. Rev., 2021, 8 (8): nwaa305. doi: 10.1093/nsr/nwaa305http://dx.doi.org/10.1093/nsr/nwaa305
FU H T, WANG Z H, SUN YM. Advances in non‐fullerene acceptor based ternary organic solar Cells [J]. Sol. RRL, 2018, 2 (1): 1700158. doi: 10.1002/solr.201700158http://dx.doi.org/10.1002/solr.201700158
XIE Y P, LI T F, GUO J, et al. Ternary organic solar cells with small nonradiative recombination loss [J]. ACS Energy Lett., 2019, 4 (5): 1196-1203. doi: 10.1021/acsenergylett.9b00681http://dx.doi.org/10.1021/acsenergylett.9b00681
YANG C, SUN Y, LI Q C, et al. Nonfullerene ternary organic solar cell with effective charge transfer between two acceptors [J]. J. Phys. Chem. Lett., 2020, 11 (3): 927-934. doi: 10.1021/acs.jpclett.9b03502http://dx.doi.org/10.1021/acs.jpclett.9b03502
WANG W B, ZHANG F J, LI L L, et al. Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region [J]. J. Mater. Chem. C, 2015, 3 (28): 7386-7393. doi: 10.1039/c5tc01383fhttp://dx.doi.org/10.1039/c5tc01383f
LI L L, ZHANG F J, WANG W B, et al. Revealing the working mechanism of polymer photodetectors with ultra-high external quantum efficiency [J]. Phys. Chem. Chem. Phys. 2015, 17 (45): 30712-30720. doi: 10.1039/c5cp05557ahttp://dx.doi.org/10.1039/c5cp05557a
王建彬,唐孝生,周笔,等. 高性能宽带倍增型四元有机光电探测器 [J]. 发光学报, 2021, 42 (7): 1057-1064. doi: 10.37188/CJL.20210142http://dx.doi.org/10.37188/CJL.20210142
WANG J B, TANG X S, ZHOU B, et al. High performance broadband photomultiplication-type quaternary organic photodetectors[J]. Chin. J. Lumin., 2021, 42 (7): 1057-1064. (in Chinese). doi: 10.37188/CJL.20210142http://dx.doi.org/10.37188/CJL.20210142
CAMPBELL I H, CRONE B K. Bulk photoconductive gain in poly (phenylene vinylene) based diodes. J. Appl. Phys., 2007, 101 (2): 024502. doi: 10.1063/1.2422909http://dx.doi.org/10.1063/1.2422909
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution