1.北京邮电大学 电子工程学院 安全生产智能监控北京市重点实验室, 北京 100876
扫 描 看 全 文
许盼英,李天依,黎喆等.一种新型比率荧光毛细管pH传感器的制备及性能研究[J].发光学报,
XU Panying,LI Tianyi,LI Zhe,et al.Preparation of a novel ratiometric fluorescent capillary-based pH sensor[J].Chinese Journal of Luminescence,
许盼英,李天依,黎喆等.一种新型比率荧光毛细管pH传感器的制备及性能研究[J].发光学报, DOI:10.37188/CJL.20230238
XU Panying,LI Tianyi,LI Zhe,et al.Preparation of a novel ratiometric fluorescent capillary-based pH sensor[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230238
实时便捷的pH检测对于环境监测和医学诊断等领域具有重要应用价值。本文通过溶胶-凝胶法制备了一种比率荧光毛细管pH传感器。该传感器以2. 8-羟基芘-1,3,6-三磺酸三钠盐(8-hydroxy-pyrene-1,3,6-trisulfonate,HPTS)作为pH敏感的荧光探针,利用HPTS与十六烷基三甲基溴化铵(hexadecyl trimethyl ammonium bromide,CTAB)结合形成HPTS-IP离子对,然后将离子对分散于溶胶-凝胶中,并将其固定于毛细管内壁即制得比率荧光毛细管pH传感器。该传感器利用HPTS在双激发带下的发射强度比值实现比率荧光检测,当pH从5.0上升至8.0时,HPTS的荧光强度比率随pH值增加逐渐增强,pKa值为6.95,通过分析HPTS的比率荧光强度变化可间接监测pH波动。该传感器具有较好的pH敏感性、稳定性和可逆性,且可快速、灵活、便捷地进行实际操作,在环境保护和生物医学领域的pH监测分析方面拥有良好的应用前景。
Real-time and convenient pH detection plays an important role in environmental monitoring, medical diagnosis and other fields. In this paper, a ratiometric fluorescent capillary-based pH sensor was prepared by sol-gel method. The sodium 8-hydroxy-pyrene-1,3,6-trisulfonate (HPTS) acts as a pH sensitive fluorescent probe, and combines with hexadecyl trimethyl ammonium bromide (CTAB) to form HPTS-IP ion pairs. Then the ion pairs were dispersed in the sol-gel, and further fixed in the inner wall of capillary to obtain the ratiometric fluorescent capillary pH sensor. Based on the dual excitation bands of HPTS, the referenced excitation ratiometric sensor is realized. When the pH value rises from 5 to 8, the fluorescence intensity ratio of HPTS gradually increases with the increase of pH, with a pKa value of 6.95. By analyzing the changes in fluorescence intensity ratio of HPTS, pH can be indirectly detected. This sensor has high pH sensitivity, good stability, and excellent reversibility, which can be applied quickly, flexibly, and conveniently in practical operations. All in all, it is promising in pH monitoring at environmental protection and biomedical fields.
荧光探针光学传感器pH检测毛细管比率荧光
fluorescence probeoptical sensorpH detectioncapillaryratiometric fluorescence
WERNER J, BELZ M, KLEIN KF, et al. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement[J]. Measurement, 2021,178: 109323. doi: 10.1016/j.measurement.2021.109323http://dx.doi.org/10.1016/j.measurement.2021.109323
YOUSEFI H, SU H, IMANI SM, et al. Intelligent food packaging; a review of smart sensing technologies for monitoring food quality[J]. ACS Sensors, 2019, 4: 808-821. doi: 10.1021/acssensors.9b00440http://dx.doi.org/10.1021/acssensors.9b00440
VENKATESAN M, VEERAMUTHU L, LIANG F, et al. Evolution of Electrospun Nanofibers Fluorescent and Colorimetric Sensors for Environmental Toxicants, pH, Temperature, and Cancer Cells-A Review with Insights on Applications[J]. Chemical Engineering Journal, 2020, 397: 125431. doi: 10.1016/j.cej.2020.125431http://dx.doi.org/10.1016/j.cej.2020.125431
NIVENS DA, ZHANG Y, ANGEL SM. A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol-gel[J]. Analytica Chimica Acta ,1998, 376:235-245. doi: 10.1016/s0003-2670(98)00505-4http://dx.doi.org/10.1016/s0003-2670(98)00505-4
聂方,聂雅坤,王小卉.荧光过氧化氢酶纳米传感器的制备及性能[J].发光学报, 2020,8: 826-833. doi: 10.37188/fgxb20204107.0826http://dx.doi.org/10.37188/fgxb20204107.0826
NIE F, NIE YK, WANG XH, et al. Ratiometric Fluorescent Enzymatic Nanosensors for Intracellular Hydrogen Peroxide[J]. Chinese Journal of Luminescence, 2020,8: 826-833. (in Chinese). doi: 10.37188/fgxb20204107.0826http://dx.doi.org/10.37188/fgxb20204107.0826
RADUNZ S, RUNE Tschiche H, MOLDENHAUER D, et al. Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs[J]. Sensors and Actuators B, 2017, 251: 490-494. doi: 10.1016/j.snb.2017.05.080http://dx.doi.org/10.1016/j.snb.2017.05.080
WENCEL D, ABEL T, McDONAGH C. Optical chemical pH sensors[J]. Analytical Chemistry, 2014,86: 15-29. doi: 10.1021/ac4035168http://dx.doi.org/10.1021/ac4035168
BOZKURT E, INCI Gul H, OZGUN DO. Pyrazoline derived new “off-on-off” fluorescent pH sensors[J]. Optical Materials, 2018, 84: 550. doi: 10.1016/j.optmat.2018.07.052http://dx.doi.org/10.1016/j.optmat.2018.07.052
STEINEGGER A, WOLFBEIS OS, BORISOV SM. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications[J]. Chemical reviews, 2020, 120:12357-12489. doi: 10.1021/acs.chemrev.0c00451http://dx.doi.org/10.1021/acs.chemrev.0c00451
WANG XH, FENG YXY, LIU J, et al. Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations[J]. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2022, 267:120477. doi: 10.1016/j.saa.2021.120477http://dx.doi.org/10.1016/j.saa.2021.120477
杨步高,赵一,韦晓菲.一种基于异硫氰酸荧光素的pH纳米传感器制备研究[J].发光学报, 2020,5:729-733.
YANG B, ZHAO Y, WEI X, et al. Preparation of fluorescent pH nanosensor based on flourescein isothiocyanate[J]. Chinese Journal of Luminescence, 2020,5:729-733. (in Chinese)
HAN J, BURGESS K. Fluorescent Indicators for Intracellular pH[J]. Chemical Reviews, 2010, 110: 2709-2728. doi: 10.1021/cr900249zhttp://dx.doi.org/10.1021/cr900249z
WENCEL D, MACCRAITH BD, McDONAGH C. High performance optical ratiometric sol-gel-based pH sensor[J]. Sensors and Actuators B, 2009,139: 208-213. doi: 10.1016/j.snb.2008.12.066http://dx.doi.org/10.1016/j.snb.2008.12.066
Ericson MN, Shankar SK, Chahine LM, et al. Development of Neutral Red as a pH/pCO2 Luminescent Sensor for Biological Systems[J]. Sensors, 2021, 21: 4057. doi: 10.3390/chemosensors9080210http://dx.doi.org/10.3390/chemosensors9080210
Bai Z, Chen R, Si P, et al. Fluorescent pH Sensor Based on Ag@SiO2 Core-Shell Nanoparticle[J]. ACS Appl. Mater. Interfaces, 2013, 5, 5856-5860. doi: 10.1021/am401528whttp://dx.doi.org/10.1021/am401528w
WANG XD, WOLFBEIS OS. Fiber-optic chemical sensors and biosensors[J]. Analytical Chemistry, 2013, 85:487. doi: 10.1021/ac303159bhttp://dx.doi.org/10.1021/ac303159b
XU M, OBODO D, YADAVALLI VK. The design, fabrication, and applications of flexible biosensing devices[J]. Biosensors and Bioelectronics, 2019, 124: 96. doi: 10.1016/j.bios.2018.10.019http://dx.doi.org/10.1016/j.bios.2018.10.019
WANG J, SU X, GAO D, et al. Capillary Sensors Composed of CdTe Quantum Dots for Real-Time In Situ Detection of Cu2+[J]. ACS Applied Nano Materials, 2021, 4:8990-8997. doi: 10.1021/acsanm.1c01608http://dx.doi.org/10.1021/acsanm.1c01608
LI Y, MEN X, MEN G, et al. A distance-based capillary biosensor using wettability alteration[J]. Lab Chip, 2021, 21:719. doi: 10.1039/d0lc01147ahttp://dx.doi.org/10.1039/d0lc01147a
ROWLAND KJ, FRANÇOIS A, HOFFMANN P, et al.. Fluorescent polymer coated capillaries as optofluidic refractometric sensors[J]. Optics Express, 2013, 21: 11492. doi: 10.1364/oe.21.011492http://dx.doi.org/10.1364/oe.21.011492
WANG XH, FENG Y, LI Z, et al. A novel multifunctional fluorescent capillary-based sensor for simultaneous monitoring of pH, O2 and CO2[J]. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2024, 304:123349. doi: 10.1016/j.saa.2023.123349http://dx.doi.org/10.1016/j.saa.2023.123349
李庆芝,周奕华,陈袁,等.比率型碳点荧光传感器检测机理与应用研究进展[J]. 发光学报, 2020,13:579-591. doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
LI Q, ZHOU Y, CHEN Y, et al. Research Progress on Detection Mechanism and Application of Carbon Dots-based Ratiometric Fluorescence Sensor [J]. Chinese Journal of Luminescence, 2020, 13:579-591. doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
KE J, LU S, SHANG X, et al. A Strategy of NIR Dual-Excitation Upconversion for Ratiometric Intracellular Detection [J]. Advanced Science, 2019, 6, 1901874. doi: 10.1002/advs.201901874http://dx.doi.org/10.1002/advs.201901874
JIN W, WU L, SONG Y, et al. Continuous Intra-Arterial Blood pH Monitoring by a Fiber-Optic Fluorosensor [J]. Ieee Transactions On Biomedical Engineering, 2011,58:1232-1238. doi: 10.1109/tbme.2011.2107514http://dx.doi.org/10.1109/tbme.2011.2107514
GE J, FAN L, ZHANG K, et al. A two-photon ratiometric fluorescent probe for effective monitoring of lysosomal pH in live cells and cancer tissues [J]. Sensors and Actuators B, 2018, 262:913-921. doi: 10.1016/j.snb.2018.02.082http://dx.doi.org/10.1016/j.snb.2018.02.082
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution