1.长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
扫 描 看 全 文
伏丁阳,高欣,赵仁泽等.1 μm波段高功率超辐射发光二极管的研制[J].发光学报,
FU Dingyang,GAO Xin,ZHAO Renze,et al.Study on 1 μm High Power Superluminescent Diodes[J].Chinese Journal of Luminescence,
伏丁阳,高欣,赵仁泽等.1 μm波段高功率超辐射发光二极管的研制[J].发光学报, DOI:10.37188/CJL.20230216
FU Dingyang,GAO Xin,ZHAO Renze,et al.Study on 1 μm High Power Superluminescent Diodes[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230216
为提高1 μm波段超辐射发光二极管的输出特性,对外延结构及J型波导结构参数进行研究,基于研究结果确定外延结构及波导结构参数并对电极窗口制备工艺及单层氧化铪薄膜成膜条件进行优化。研究表明,缩小波导与限制层AlGaAs材料中Al组分差值利于改善器件光束特性。此外,增加刻蚀深度、脊宽及曲率半径均会使损耗系数减小以提高器件输出功率。基于仿真结果制备出非均匀阱宽大阱深的三量子阱结构的器件,前腔面镀制反射率约为0.5%的单层氧化铪薄膜,后腔面蒸镀高反膜,腔长约2 mm,波导曲率半径为21.8 mm,在500 mA连续电流注入下,实现了118.1 mW输出功率和32.5 nm光谱半宽。单层增透膜的设计抑制了器件激射并简化了工艺复杂度,避免了多层增透膜不同材料间的应力问题。
In order to improve the output characteristics of 1 μm-band superluminescent diodes, this article studies the epitaxial structure and J-type waveguide structure. Based on the research results, the parameters of the epitaxial structure and waveguide structure are determined, and the electrode window preparation process and single-layer hafnium oxide film formation conditions are optimized. Research has shown that reducing the difference in Al composition between the waveguide and the limiting layer AlGaAs material is beneficial for improving the beam characteristics of the device. In addition, increasing the etching depth, ridge width, and curvature radius will reduce the loss coefficient and improve the output power of the device. Based on simulation results, a three quantum well structure device with non-uniform well width and large well depth was prepared. A single-layer hafnium oxide film with a reflectivity of about 0.5% was deposited on the front cavity surface, and a high reflection film was evaporated on the back cavity surface. The cavity length was about 2 mm, and the waveguide curvature radius was 21.8 mm. Under 500 mA continuous current injection, an output power of 118.1 mW and a spectral half width of 32.5 nm were achieved. The horizontal and vertical far-field divergence angles of the device are 13.2 °and 21.1 °, respectively. In addition, the design of a single-layer anti-reflective film effectively suppresses the lasing of devices with high gain, simplifies process complexity, and avoids stress issues between different materials of the multi-layer anti-reflective film. All devices are tested at room temperature.
超辐射发光二极管弯曲波导曲率半径损耗系数输出特性
superluminescent diodescurved waveguidecurvature radiusloss coefficientoutput characteristic
HALE G M, QUERRY M R. Optical constants of water in the 200-nm to 200-μm wavelength region [J]. Appl. Optics, 1973,12(3): 555-563. doi: 10.1364/ao.12.000555http://dx.doi.org/10.1364/ao.12.000555
WANG Y, NELSON J S, CHEN Z, et al. Optimal wavelength for ultrahigh-resolution optical coherence tomography [J]. Opt. Express, 2003,11(12):1411-1417. doi: 10.1364/oe.11.001411http://dx.doi.org/10.1364/oe.11.001411
KURBATOV L N, SHAKHIDZHANOV S S, BYSTROVA L V, et al. Investigation of superluminescence emitted by a gallium arsenide diode [J]. Sov. Phys. Semicond. , 1971,4(11):1739.
OHGOH T, MUKAI A, YAGUCHI J, et al. Demonstration of 1.0 µm InGaAs high-power and broad spectral bandwidth superluminescent diodes by using dual quantum well structure [J]. Appl. Phys. Express, 2013,6(1):014101. doi: 10.7567/apex.6.014101http://dx.doi.org/10.7567/apex.6.014101
段利华,张淑芳,周勇,等. 1053nm高速超辐射发光二极管的研制及其光电特性 [J]. 红外与毫米波学报, 2015,34(02):218-223.
DUAN L H, ZHANG S F, ZHOU Y, et al. Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm [J]. J. Infrared Millim. W. , 2015,34(02):218-223.(in Chinese)
KWON O K, LEE C W. Asymmetric double QW superluminescent diodes for broadband and high-power use [J]. Microw. Opt. Techn. Let. , 2018,60(2):494-498. doi: 10.1002/mop.30999http://dx.doi.org/10.1002/mop.30999
KAFAR A, STANCZYK S, TARGOWSKI G, et al. High-optical-power InGaN superluminescent diodes with “j-shape” waveguide [J]. Appl. Phys. Express, 2013,6(9):092102. doi: 10.7567/apex.6.092102http://dx.doi.org/10.7567/apex.6.092102
杨静航,晏长岭,刘云,等. 红外波段超辐射发光二极管研究进展 [J]. 发光学报, 2023,44(09):1621-1635.
YANG J H, YAN C L, LIU Y, et al. Research progresses on infrared superluminescent diodes [J]. Chin. J. Lumin. , 2023,44(09):1621-1635. (in Chinese)
刘帅男,王芝浩,王警辉,等. 970 nm超辐射发光二极管弯曲脊形波导数值分析 [J]. 光电子·激光, 2023,34(06):628-635.
LIU S N, WANG Z H, WANG J H, et al. Numerical analysis of curved ridge waveguide for 970 nm superluminescent light emitting diode [J]. J. Optoelectron.·Laser, 2023,34(06):628-635. (in Chinese)
王拓,陈红梅,贾慧民,等. 1310 nm高功率超辐射发光二极管的制备及性能研究 [J]. 光子学报, 2021,50(06):187-195.
WANG T, CHEN H M, JIA H M, et al. Performance research and fabrication of 1310 nm superluminescent diode with high power [J]. Acta. Photonica. Sinic. , 2021,50(06):187-195. (in Chinese)
AN Q, JIN P, WU J, et al. Optical loss in bent-waveguide superluminescent diodes [J]. Semicond. Sci. Tech. , 2012,27(5):055- 003. doi: 10.1088/0268-1242/27/5/055003http://dx.doi.org/10.1088/0268-1242/27/5/055003
李岚,傅丽伟,张纳,等. 多量子阱超辐射发光二极管(SLD)热分布计算 [J]. 发光学报, 2005(05):55-58. doi: 10.1142/s0192415x05003399http://dx.doi.org/10.1142/s0192415x05003399
LI L, FU L W, ZHANG N, et al. Calculation of thermal distribution in multi quantum well superluminescent diodes (SLDs) [J]. doi: 10.1142/s0192415x05003399http://dx.doi.org/10.1142/s0192415x05003399
Chin. J. Lumin. , 2005(05):55-58. (in Chinese). doi: 10.1142/s0192415x05003399http://dx.doi.org/10.1142/s0192415x05003399
SONG H J, KIM K, LEEM A Y, et al. High-power broadband superluminescent diode using selective area growth at 1.5-μm wavelength [J]. IEEE Photonic. Tech. L. , 2007,19(19):1415-1417. doi: 10.1109/lpt.2007.902946http://dx.doi.org/10.1109/lpt.2007.902946
PARK J, LI X. Theoretical and numerical analysis of superluminescent diodes [J]. J. Lightwave Technol. , 2006,24(6): 2473-2480. doi: 10.1109/jlt.2006.874601http://dx.doi.org/10.1109/jlt.2006.874601
祝子翔,张晶,孙春明,等. 增益钳制式850 nm波长超辐射发光二极管设计研究 [J]. 兵工学报, 2018,39(02):325-330.
ZHU Z X, ZHANG J, SUN C M, et al. Development of gain-clamped 850 nm superluminescent diode [J]. Acta. Armament. , 2018,39(02):325-330. (in Chinese)
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution