浏览全部资源
扫码关注微信
1.山东大学 微电子学院, 新一代半导体材料研究院, 山东 济南 250100
2.广 东省科学院 半导体研究所, 广东 广州 510650
3.山东浪潮华光光电子股份有限公司, 山东 潍坊 261061
Published:05 November 2023,
Received:16 September 2023,
Revised:04 October 2023,
移动端阅览
邓建阳,贺龙飞,武智波等.深紫外AlGaN基多量子阱结构中载流子辐射复合的局域特征[J].发光学报,2023,44(11):1974-1980.
DENG Jianyang,HE Longfei,WU Zhibo,et al.Localization Features of Carrier Emission Recombination in Deep-ultraviolet AlGaN-based Multiple Quantum Well Structure[J].Chinese Journal of Luminescence,2023,44(11):1974-1980.
邓建阳,贺龙飞,武智波等.深紫外AlGaN基多量子阱结构中载流子辐射复合的局域特征[J].发光学报,2023,44(11):1974-1980. DOI: 10.37188/CJL.20230213.
DENG Jianyang,HE Longfei,WU Zhibo,et al.Localization Features of Carrier Emission Recombination in Deep-ultraviolet AlGaN-based Multiple Quantum Well Structure[J].Chinese Journal of Luminescence,2023,44(11):1974-1980. DOI: 10.37188/CJL.20230213.
利用磁控溅射和金属有机化学气相沉积方法在
c
面蓝宝石衬底上生长了深紫外Al
0.38
Ga
0.62
N/Al
0.55
Ga
0.45
N多量子阱结构,并对其荧光(PL)谱进行了测量。其PL谱的激发密度依赖性测量结果表明,该量子阱的辐射过程包含了局域载流子的散射、极化场的屏蔽和局域态的填充效应;其PL谱的温度依赖性测量结果则表明,该量子阱的辐射过程包含了局域载流子的弛豫、局域载流子的热激发和自由载流子的常规热化效应。这个现象(即多种辐射复合过程的存在)在低温和弱激发测试条件下尤为显著,并且表现出该量子阱结构具有显著的局域深度非均一性和载流子的局域效果,是浅局域载流子的散射效应和深局域态的载流子填充效应共同作用所致。在较低的温度范围内,随着温度升高,该量子阱的辐射过程是由浅局域载流子的弛豫效应和深局域载流子的热激发效应共同作用的结果。这些行为被归因于阱宽起伏所诱发的局域深度的非均一性和载流子的局域效果。
A deep-ultraviolet Al
0.38
Ga
0.62
N/Al
0.55
Ga
0.45
N multiple quantum well (MQW) structure was grown on a
c
-plane sapphire substrate using magnetron sputtering and metal organic chemical vapor deposition (MOCVD) methods, while the excitation density and temperature dependences of its photoluminescence (PL) spectrum were measured in the wide excitation density (0.1-500 kW/cm
2
) and temperature (6-300 K) ranges. The excitation density-dependent peak energies and line widths of the PL peak
P
W
from the MQWs measured at the low temperature of 6 K show that, within the low excitation density range (≤ 10 kW/cm
2
), the
P
W
line width remains almost constant, while its peak energy remains almost constant first (≤ 0.5 kW/cm
2
) and then gradually increases with increasing the excitation density, indicating that the excitation density-dependent emission process of the MQWs is dominated first by the combined effect of the scattering effect of high-energy (shallow)-localized carriers and filling effect of low-energy (deep)-localized states, and then by the combined effect of the filling effect of medium-energy (medium-depth)- localized states and Coulomb screening effect of free carriers. However, within the high excitation density range (
>
10 kW/cm
2
), both the
P
W
peak line width and peak energy increase significantly, indicating that the excitation density-dependent emission process of the MQWs is dominated by the filling effect of high-energy-localized states. On the other hand, the temperature-dependent peak energies and line widths of the
P
W
peak measured at the low excitation density of 0.1 kW/cm
2
show that, within the low temperature range (≤ 140 K), the
P
W
line width remains almost constant, while its peak energy monotonically decreases, indicating that the temperature-dependent emission process of the MQWs may be dominated by the combined effect of the relaxation of high-energy-localized carriers and thermal excitation of low-energy-localized carriers; within the high temperature range (
>
140 K),
P
W
peak line width increases significantly, while its peak energy blue shifts significantly relative to Varshni curve, indicating that the temperature-dependent emission process of the MQWs is dominated by the thermal excitation of localized carriers since the relaxation of the localized carriers is gradually suppressed with increasing the temperature. The above analysis results show the strong inhomogeneity in the depths of the localized states and the localized character of the carrier recombination in the AlGaN-based MQWs due to the significant fluctuations of well widths. This conclusion is also supported by the measurement of temperature dependent-integrated PL intensity (Arrhenius plot), because this measurement result has shown that the deep-ultraviolet AlGaN-based MQW structure has two non-radiative recombination channels with different activation energies.
深紫外LEDAlGaN多量子阱光致发光载流子局域效应
deep-ultraviolet LEDAlGaN multiple quantum wellphotoluminescencecarrier localization effect
SUSILO N, HAGEDORN S, JAEGER D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire [J]. Appl. Phys. Lett., 2018, 112(4): 041110. doi: 10.1063/1.5010265http://dx.doi.org/10.1063/1.5010265
TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres [J]. Nature, 2006, 441(7091): 325-328. doi: 10.1038/nature04760http://dx.doi.org/10.1038/nature04760
BRYAN Z, BRYAN I, XIE J Q, et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates [J]. Appl. Phys. Lett., 2015, 106(14): 142107. doi: 10.1063/1.4917540http://dx.doi.org/10.1063/1.4917540
HIRAYAMA H, YATABE T, NOGUCHI N, et al. Development of 230-270 nm AlGaN-based deep-UV LEDs [J]. Electron. Commun. Japan, 2010, 93(3): 24-33. doi: 10.1002/ecj.10197http://dx.doi.org/10.1002/ecj.10197
SHUR M S, GASKA R. Ⅲ-nitride based deep ultraviolet light sources [C]. Proceedings of the SPIE 6894, Gallium Nitride Materials and Devices Ⅲ, San Jose, California, 2008: 689419. doi: 10.1117/12.769128http://dx.doi.org/10.1117/12.769128
文尚胜, 左文财, 周悦, 等. 紫外线消毒技术的研究现状及发展趋势 [J]. 光学技术, 2020, 46(6): 664-670.
WEN S S, ZUO W C, ZHOU Y, et al. Research status and development trend of ultraviolet disinfection technology [J]. Opt. Tech., 2020, 46(6): 664-670. (in Chinese)
KNEISSL M, RASS J. Ⅲ⁃nitride Ultraviolet Emitters: Technology and Applications [M]. Cham: Springer, 2016. doi: 10.1007/978-3-319-24100-5http://dx.doi.org/10.1007/978-3-319-24100-5
吴峰, 戴江南, 陈长清. AlGaN基深紫外发光二极管研究进展 [J]. 人工晶体学报, 2020, 49(11): 2079-2097. doi: 10.3969/j.issn.1000-985X.2020.11.010http://dx.doi.org/10.3969/j.issn.1000-985X.2020.11.010
WU F, DAI J N, CHEN C Q. Research progress of AlGaN based deep ultraviolet light emitting diodes [J]. J. Synth. Cryst., 2020, 49(11): 2079-2097. (in Chinese). doi: 10.3969/j.issn.1000-985X.2020.11.010http://dx.doi.org/10.3969/j.issn.1000-985X.2020.11.010
TAKANO T, MINO T, SAKAI J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency [J]. Appl. Phys. Express, 2017, 10(3): 031002. doi: 10.7567/apex.10.031002http://dx.doi.org/10.7567/apex.10.031002
GUO Q, KIRSTE R, MITA S, et al. The polarization field in Al-rich AlGaN multiple quantum wells [J]. Jpn. J. Appl. Phys., 2019, 58(SC): SCCC10. doi: 10.7567/1347-4065/ab07a9http://dx.doi.org/10.7567/1347-4065/ab07a9
ZHANG Y H, ZHENG Y X, MENG R L, et al. Enhancing both TM- and TE-polarized light extraction efficiency of AlGaN-based deep ultraviolet light-emitting diode via air cavity extractor with vertical sidewall [J]. IEEE Photonics J., 2018, 10(4): 8200809. doi: 10.1109/jphot.2018.2849747http://dx.doi.org/10.1109/jphot.2018.2849747
YU H B, CHEN Q, REN Z J, et al. Enhanced performance of an AlGaN-based deep-ultraviolet LED having graded quantum well structure [J]. IEEE Photonics J., 2019, 11(4): 8201006. doi: 10.1109/jphot.2019.2922280http://dx.doi.org/10.1109/jphot.2019.2922280
WU F, SUN H D, AJIA I A, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design [J]. J. Phys. D: Appl. Phys., 2017, 50(24): 245101. doi: 10.1088/1361-6463/aa70ddhttp://dx.doi.org/10.1088/1361-6463/aa70dd
DONG P, YAN J C, ZHANG Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency [J]. J. Cryst. Growth, 2014, 395: 9-13. doi: 10.1016/j.jcrysgro.2014.02.039http://dx.doi.org/10.1016/j.jcrysgro.2014.02.039
CHEN Y D, WU H L, HAN E Z, et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping [J]. Appl. Phys. Lett., 2015, 106(16): 162102. doi: 10.1063/1.4919005http://dx.doi.org/10.1063/1.4919005
WANG S, DAI J N, HU J H, et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure [J]. ACS Photonics, 2018, 5(9): 3534-3540. doi: 10.1021/acsphotonics.8b00899http://dx.doi.org/10.1021/acsphotonics.8b00899
YASAN A, MCCLINTOCK R, MAYES K, et al. Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(20): 4083-4085. doi: 10.1063/1.1626808http://dx.doi.org/10.1063/1.1626808
LEE Y J, CHIU C H, KE C C, et al. Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate [J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(4): 1137-1143. doi: 10.1109/jstqe.2009.2014967http://dx.doi.org/10.1109/jstqe.2009.2014967
MU Q, XU M S, WANG X S, et al. Influence of the InGaN/GaN quasi-superlattice underlying layer on photoluminescence in InGaN/GaN multiple quantum wells [J]. Phys. E: Low⁃Dimens. Syst. Nanostruct., 2016, 76: 1-5. doi: 10.1016/j.physe.2015.10.010http://dx.doi.org/10.1016/j.physe.2015.10.010
MA Z X, PIERZ K. Carrier thermalization and activation within self-assembled InAs/AlAs quantum dot states [J]. Surf. Sci., 2002, 511(1-3): 57-64. doi: 10.1016/s0039-6028(02)01553-4http://dx.doi.org/10.1016/s0039-6028(02)01553-4
SUN H, JI Z W, WANG H N, et al. Transfer and recombination mechanism of carriers in phase-separated InGaN quantum wells [J]. J. Appl. Phys., 2013, 114(9): 093508. doi: 10.1063/1.4820395http://dx.doi.org/10.1063/1.4820395
WANG H N, JI Z W, QU S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells [J]. Opt. Express, 2012, 20(4): 3932-3940. doi: 10.1364/oe.20.003932http://dx.doi.org/10.1364/oe.20.003932
LI J F, LI C F, XU M S, et al. “W-shaped” injection current dependence of electroluminescence linewidth in green InGaN/GaN-based LED grown on silicon substrate [J]. Opt. Express, 2017, 25(20): A871-A879. doi: 10.1364/oe.25.00a871http://dx.doi.org/10.1364/oe.25.00a871
PORTE H P, TURCHINOVICH D, COOKE D G, et al. Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells [J]. J. Phys.: Conf. Ser., 2009, 193: 012084. doi: 10.1088/1742-6596/193/1/012084http://dx.doi.org/10.1088/1742-6596/193/1/012084
TAMULAITIS G, MICKEVIČIUS J, KAZLAUSKAS K, et al. Efficiency droop in high-Al-content AlGaN/AlGaN quantum wells [J]. Phys. Status Solidi C, 2011, 8(7-8): 2130-2132. doi: 10.1002/pssc.201000889http://dx.doi.org/10.1002/pssc.201000889
徐庆君. 高Al组分AlGaN薄膜的MOCVD生长及p型掺杂研究 [D]. 南京: 南京大学, 2019.
XU Q J. Study on MOCVD Growth of High Al Fraction AlGaN and p⁃type Doping of AlGaN Films [D]. Nanjing: Nanjing University, 2019. (in Chinese)
NEPAL N, LI J, NAKARMI M L, et al. Temperature and compositional dependence of the energy band gap of AlGaN alloys [J]. Appl. Phys. Lett., 2005, 87(24): 242104. doi: 10.1063/1.2142333http://dx.doi.org/10.1063/1.2142333
FRIEL I, THOMIDIS C, FEDYUNIN Y, et al. Investigation of excitons in AlGaN/GaN multiple quantum wells by lateral photocurrent and photoluminescence spectroscopies [J]. J. Appl. Phys., 2004, 95(7): 3495-3502. doi: 10.1063/1.1651323http://dx.doi.org/10.1063/1.1651323
SUN Y P, CHO Y H, KIM H M, et al. High efficiency and brightness of blue light emission from dislocation-free InGaN∕GaN quantum well nanorod arrays [J]. Appl. Phys. Lett., 2005, 87(9): 093115. doi: 10.1063/1.2037203http://dx.doi.org/10.1063/1.2037203
CHEN S C, LI Y, TIAN W, et al. Numerical analysis on the effects of multi-quantum last barriers in AlGaN-based ultraviolet light-emitting diodes [J]. Appl. Phys. A, 2014, 118(4): 1357-1363. doi: 10.1007/s00339-014-8888-zhttp://dx.doi.org/10.1007/s00339-014-8888-z
LI L, MIYACHI Y, MIYOSHI M, et al. Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes [J]. Appl. Phys. Express, 2019, 12(1): 011010. doi: 10.7567/1882-0786/aaf62bhttp://dx.doi.org/10.7567/1882-0786/aaf62b
李金钗, 季桂林, 杨伟煌, 等. 高Al组分AlGaN多量子阱结构材料发光机制探讨 [J]. 发光学报, 2016, 37(5): 513-518. doi: 10.3788/fgxb20163705.0513http://dx.doi.org/10.3788/fgxb20163705.0513
LI J C, JI G L, YANG W H, et al. Emission mechanism of high Al-content AlGaN multiple quantum well [J]. Chin. J. Lumin., 2016, 37(5): 513-518. (in Chinese). doi: 10.3788/fgxb20163705.0513http://dx.doi.org/10.3788/fgxb20163705.0513
LI L, MIYACHI Y, MIYOSHI M, et al. Enhanced emission efficiency of deep ultraviolet light-emitting AlGaN multiple quantum wells grown on an N-AlGaN underlying layer [J]. IEEE Photonics J., 2016, 8(5): 1601710. doi: 10.1109/jphot.2016.2601439http://dx.doi.org/10.1109/jphot.2016.2601439
HWANG J S, GOKARNA A, CHO Y H, et al. Direct comparison of optical characteristics of InGaN-based laser diode structures grown on pendeo epitaxial GaN and sapphire substrates [J]. Appl. Phys. Lett., 2007, 90(13): 131908. doi: 10.1063/1.2716313http://dx.doi.org/10.1063/1.2716313
SHI K J, WANG C X, LI R, et al. Influence of in volatilization on photoluminescence in InGaN/GaN multiple quantum wells [J]. Mater. Express, 2021, 11(12): 2033-2038. doi: 10.1166/mex.2021.2105http://dx.doi.org/10.1166/mex.2021.2105
0
Views
301
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution