浏览全部资源
扫码关注微信
1.长春理工大学 材料科学与工程学院, 吉林 长春 130022
2.光电功能材料教育部工程研究中心, 吉林 长春 130022
Published:05 October 2023,
Received:21 July 2023,
Revised:07 August 2023,
移动端阅览
段雨晗,蒋大勇,赵曼.高增益ZnO肖特基紫外光电探测器光响应特性[J].发光学报,2023,44(10):1816-1823.
DUAN Yuhan,JIANG Dayong,ZHAO Man.Responsivity Characteristics of ZnO Schottky Ultraviolet Photodetectors with High Gain[J].Chinese Journal of Luminescence,2023,44(10):1816-1823.
段雨晗,蒋大勇,赵曼.高增益ZnO肖特基紫外光电探测器光响应特性[J].发光学报,2023,44(10):1816-1823. DOI: 10.37188/CJL.20230169.
DUAN Yuhan,JIANG Dayong,ZHAO Man.Responsivity Characteristics of ZnO Schottky Ultraviolet Photodetectors with High Gain[J].Chinese Journal of Luminescence,2023,44(10):1816-1823. DOI: 10.37188/CJL.20230169.
ZnO宽禁带半导体紫外光电探测器具有稳定性高、成本低等诸多优势,在国防、医疗、环境监测等领域具有重要的应用前景。本文采用射频磁控技术在SiO
2
衬底上制备了ZnO薄膜,在此基础上获得了具有高增益的金属⁃半导体⁃金属(MSM)结构的ZnO紫外光电探测器。10 V偏压下,探测器的响应度和外量子效率分别为4.90 A/W和1668%。这是由于光照情况下,半导体与金属界面处的空穴俘获产生高增益所导致的。此外,进一步研究了增益效应、外加偏压和耗尽层宽度对ZnO紫外光电探测器响应度的调控规律与影响机制,为高性能紫外光电探测器的研制与性能调控提供了重要的参考依据。
The wide bandgap semiconductor ZnO ultraviolet (UV) photodetector has many advantages, such as high stability, low cost, and has important application prospects in fields such as national defense, medical care, and environmental monitoring. In this work, ZnO thin films were fabricated on SiO
2
substrate using radio frequency magnetron sputtering. Subsequently, a ZnO UV photodetector with a high-gain metal-semiconductor-metal (MSM) structure was achieved. At a bias voltage of 10 V, the detector exhibited a responsivity of 4.90 A/W and an external quantum efficiency of 1668%. This high gain was attributed to the hole trapping at the semiconductor-metal interface under illumination. Furthermore, the modulation rules and influence mechanisms of gain effect, applied bias voltage, and depletion layer width on the responsivity of ZnO UV photodetector were thoroughly investigated. This research provides an important reference for the development and performance control of high-performance UV photodetectors.
ZnO紫外光电探测器响应度增益效应耗尽层
ZnOultraviolet photodetectorresponsivitygain effectdepletion layer
CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications [J]. Adv. Funct. Mater., 2020, 30(16): 1909909. doi: 10.1002/adfm.201909909http://dx.doi.org/10.1002/adfm.201909909
CHEN Y, WU Y, BEN J, et al. A high-response ultraviolet photodetector by integrating GaN nanoparticles with graphene [J]. J. Alloys Compd., 2021, 868: 159281. doi: 10.1016/j.jallcom.2021.159281http://dx.doi.org/10.1016/j.jallcom.2021.159281
李炳军, 江文杰, 梁永辉. 基于导弹羽烟紫外辐射的日盲型探测器 [J]. 航天电子对抗, 2006, 22(6): 7-10. doi: 10.3969/j.issn.1673-2421.2006.06.003http://dx.doi.org/10.3969/j.issn.1673-2421.2006.06.003
LI B J, JIANG W J, LIANG Y H. Solar-blinded detector by UV radiation from missile plume [J]. Aerospace Electronic Warfare, 2006, 22(6): 7-10. (in Chinese). doi: 10.3969/j.issn.1673-2421.2006.06.003http://dx.doi.org/10.3969/j.issn.1673-2421.2006.06.003
NASIRI N, JIN D Y, TRICOLI A. Nanoarchitechtonics of visible-blind ultraviolet photodetector materials: critical features and nano-microfabrication [J]. Adv. Opt. Mater., 2019, 7(2): 1800580. doi: 10.1002/adom.201800580http://dx.doi.org/10.1002/adom.201800580
HOU Y N, MEI Z X, LIANG H L, et al. Dual-band MgZnO ultraviolet photodetector integrated with Si [J]. Appl. Phys. Lett., 2013, 102(15): 153510. doi: 10.1063/1.4802486http://dx.doi.org/10.1063/1.4802486
CHEN H Y, LIU K W, HU L F, et al. New concept ultraviolet photodetectors [J]. Mater. Today, 2015, 18(9): 493-502. doi: 10.1016/j.mattod.2015.06.001http://dx.doi.org/10.1016/j.mattod.2015.06.001
孙华山, 刘可为, 陈洪宇, 等. Au电极厚度对MgZnO紫外探测器性能的影响 [J]. 发光学报, 2015, 36(2): 200-205. doi: 10.3788/fgxb20153602.0200http://dx.doi.org/10.3788/fgxb20153602.0200
SUN H S, LIU K W, CHEN H Y, et al. Effect of Au electrode thickness on the performance of MgZnO UV detector [J]. Chin. J. Lumin., 2015, 36(2): 200-205. (in Chinese). doi: 10.3788/fgxb20153602.0200http://dx.doi.org/10.3788/fgxb20153602.0200
薛金玲, 马剑钢. 化学气相沉积法制备β-Ga2O3纳米结构及其缺陷发光性质研究 [J]. 发光学报, 2017, 38(10): 1273-1279. doi: 10.3788/fgxb20173810.1273http://dx.doi.org/10.3788/fgxb20173810.1273
XUE J L, MA J G. Defects luminescence behavior of β-Ga2O3 nanostructures synthesized by chemical vapor deposition [J]. Chin. J. Lumin., 2017, 38(10): 1273-1279. (in Chinese). doi: 10.3788/fgxb20173810.1273http://dx.doi.org/10.3788/fgxb20173810.1273
WANG T, JIAO Z B, CHEN T, et al. Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications [J]. Nanoscale, 2013, 5(16): 7552-7557. doi: 10.1039/c3nr01459bhttp://dx.doi.org/10.1039/c3nr01459b
KHAN S B, FAISAL M, RAHMAN M M, et al. Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor [J]. Talanta, 2011, 85(2): 943-949. doi: 10.1016/j.talanta.2011.05.003http://dx.doi.org/10.1016/j.talanta.2011.05.003
RIDHUAN N S, RAZAK K A, LOCKMAN Z. Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods [J]. Sci. Rep., 2018, 8(1): 13722. doi: 10.1038/s41598-018-32127-5http://dx.doi.org/10.1038/s41598-018-32127-5
陈洪宇, 王月飞, 闫珺, 等. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究 [J]. 中国光学, 2019, 12(5): 1057-1063. doi: 10.3788/co.20191205.1057http://dx.doi.org/10.3788/co.20191205.1057
CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction [J]. Chin. Opt., 2019, 12(5): 1057-1063. (in Chinese). doi: 10.3788/co.20191205.1057http://dx.doi.org/10.3788/co.20191205.1057
MOORE J C, THOMPSON C V. A phenomenological model for the photocurrent transient relaxation observed in zno-based photodetector devices [J]. Sensors, 2013, 13(8): 9921-9940. doi: 10.3390/s130809921http://dx.doi.org/10.3390/s130809921
ZHENG W, LIN R C, RAN J X, et al. Vacuum-ultraviolet photovoltaic detector [J]. ACS Nano, 2018, 12(1): 425-431. doi: 10.1021/acsnano.7b06633http://dx.doi.org/10.1021/acsnano.7b06633
WU D, JIA C, SHI F H, et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing [J]. J. Mater. Chem. A, 2020, 8(7): 3632-3642. doi: 10.1039/c9ta13611hhttp://dx.doi.org/10.1039/c9ta13611h
TABARES G, HIERRO A, ULLOA J M, et al. High responsivity and internal gain mechanisms in Au-ZnMgO Schottky photodiodes [J]. Appl. Phys. Lett., 2010, 96(10): 101112. doi: 10.1063/1.3340945http://dx.doi.org/10.1063/1.3340945
ZHANG S K, WANG W B, SHTAU I, et al. Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain [J]. Appl. Phys. Lett., 2002, 81(25): 4862-4864. doi: 10.1063/1.1526166http://dx.doi.org/10.1063/1.1526166
ZHU H, SHAN C X, WANG L K, et al. Metal-oxide-semiconductor-structured MgZnO ultraviolet photodetector with high internal gain [J]. J. Phys. Chem. C, 2010, 114(15): 7169-7172. doi: 10.1021/jp101083nhttp://dx.doi.org/10.1021/jp101083n
HOU Y N, MEI Z X, LIU Z L, et al. Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain [J]. Appl. Phys. Lett., 2011, 98(10): 103506. doi: 10.1063/1.3563705http://dx.doi.org/10.1063/1.3563705
MUÑOZ E, MONROY E, GARRIDO J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors [J]. Appl. Phys. Lett., 1997, 71(7): 870-872. doi: 10.1063/1.119673http://dx.doi.org/10.1063/1.119673
GAO W, KHAN A S, BERGER P R, et al. In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tinoxide Schottky contacts [J]. Appl. Phys. Lett., 1994, 65(15): 1930-1932. doi: 10.1063/1.112820http://dx.doi.org/10.1063/1.112820
KATZ O, BAHIR G, SALZMAN J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors [J]. Appl. Phys. Lett., 2004, 84(20): 4092-4094. doi: 10.1063/1.1753056http://dx.doi.org/10.1063/1.1753056
TAUC J. Optical properties and electronic structure of amorphous Ge and Si [J]. Mater. Res. Bull., 1968, 3(1): 37-46. doi: 10.1016/0025-5408(68)90023-8http://dx.doi.org/10.1016/0025-5408(68)90023-8
YOUNGBLOOD N, CHEN C, KOESTER S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current [J]. Nat. Photon., 2015, 9(4): 247-252. doi: 10.1038/nphoton.2015.23http://dx.doi.org/10.1038/nphoton.2015.23
CHEN S, TENG C J, ZHANG M, et al. A flexible UV⁃VIS⁃NIR photodetector based on a perovskite/conjugated-polymer composite [J]. Adv. Mater., 2016, 28(28): 5969-5974. doi: 10.1002/adma.201600468http://dx.doi.org/10.1002/adma.201600468
HSU C L, JHANG B Y, KAO C, et al. UV-illumination and Au-nanoparticles enhanced gas sensing of p-type Na-doped ZnO nanowires operating at room temperature [J]. Sens. Actuators B, 2018, 274: 565-574. doi: 10.1016/j.snb.2018.08.016http://dx.doi.org/10.1016/j.snb.2018.08.016
YANG Y, GUO W, QI J J, et al. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt [J]. Appl. Phys. Lett., 2010, 97(22): 223113. doi: 10.1063/1.3524231http://dx.doi.org/10.1063/1.3524231
LIU R S, JIANG D Y, DUAN Q, et al. Origin of the responsivity characteristics of Au/ZnO/MgZnO and Au/MgZnO/ZnO structured ultraviolet photodetectors [J]. Appl. Phys. Lett., 2014, 105(4): 043505. doi: 10.1063/1.4891963http://dx.doi.org/10.1063/1.4891963
蒋大勇. MSM结构MgZnO短波紫外光电探测器的制备和特性研究 [D]. 长春: 中国科学院, 2009. doi: http://159.226.165.120//handle/181722/1005http://dx.doi.org/http://159.226.165.120//handle/181722/1005
JIANG D Y. The Fabrication and Characterization of Short Wavelength MgZnO MSM UV Photodetectors [D]. Changchun: Chinese Academy of Sciences, 2009. (in Chinese). doi: http://159.226.165.120//handle/181722/1005http://dx.doi.org/http://159.226.165.120//handle/181722/1005
WANG P, LIU S S, LUO W J, et al. Arrayed van der Waals broadband detectors for dual-band detection [J]. Adv. Mater., 2017, 29(16): 1604439. doi: 10.1002/adma.201604439http://dx.doi.org/10.1002/adma.201604439
MUHAMMAD A, HASSAN Z, MOHAMMAD S M, et al. Enhanced sensitivity of low-cost fabricated fluorine doped ZnO metal semiconductor metal photodetector [J]. Opt. Mater., 2021, 122: 111771. doi: 10.1016/j.optmat.2021.111771http://dx.doi.org/10.1016/j.optmat.2021.111771
KUMAR C, KUSHWAHA B K, KUMAR A, et al. Fibrous Al-doped ZnO thin film ultraviolet photodetectors with improved responsivity and speed [J]. IEEE Photon. Technol. Lett., 2020, 32(6): 337-340. doi: 10.1109/lpt.2020.2974780http://dx.doi.org/10.1109/lpt.2020.2974780
FATHIMA N, PRADEEP N, BALAKRISHNAN J. Enhanced optical and electrical properties of antimony doped ZnO nanostructures based MSM UV photodetector fabricated on a flexible substrate [J]. Mater. Sci. Semicond. Process., 2019, 90: 26-31. doi: 10.1016/j.mssp.2018.10.002http://dx.doi.org/10.1016/j.mssp.2018.10.002
0
Views
534
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution