浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学 材料科学与光电工程研究中心, 北京 100049
Published:05 July 2023,
Received:15 June 2023,
Revised:02 July 2023,
扫 描 看 全 文
陈星,程祯,刘可为等.镓基氧化物薄膜日盲紫外探测器研究进展[J].发光学报,2023,44(07):1167-1185.
CHEN Xing,CHENG Zhen,LIU Kewei,et al.Research Progress in Gallium Based Oxide Thin Film Solar-blind Ultraviolet Photodetectors[J].Chinese Journal of Luminescence,2023,44(07):1167-1185.
陈星,程祯,刘可为等.镓基氧化物薄膜日盲紫外探测器研究进展[J].发光学报,2023,44(07):1167-1185. DOI: 10.37188/CJL.20230146.
CHEN Xing,CHENG Zhen,LIU Kewei,et al.Research Progress in Gallium Based Oxide Thin Film Solar-blind Ultraviolet Photodetectors[J].Chinese Journal of Luminescence,2023,44(07):1167-1185. DOI: 10.37188/CJL.20230146.
日盲紫外探测器在国防和民用领域均具有广阔的应用前景。基于宽禁带半导体材料的日盲紫外探测器具有无需昂贵的滤光片、工作电压低、全固态、体积小、重量轻、抗干扰能力强、工作温度范围广等特点,是公认的新一代紫外探测器。在众多的宽禁带半导体材料中,以Ga
2
O
3
作为典型代表的镓基氧化物材料因其优异的电学和光电特性已经成为近年来微电子学和光电子学领域的研究热点,特别是其本征日盲、耐高温、耐高压、化学稳定性好等优异特点使得该类材料在日盲紫外光电探测领域展现出巨大的发展潜力。鉴于此,本文综述了不同晶体结构的Ga
2
O
3
、镓酸盐氧化物、镓锡氧化物、镓铝氧化物等镓基氧化物薄膜及其日盲紫外探测器研究进展。
Solar-blind ultraviolet photodetectors have broad application prospects in the fields of national defense and civilian use. The solar-blind ultraviolet photodetectors based on wide bandgap semiconductor materials are recognized as new generation of ultraviolet detector with the characteristics of no expensive filter, low working voltage, all-solid-state, small size, light weight, strong anti-interference ability, and wide operating temperature range. Among these wide bandgap semiconductors, gallium containing oxides with Ga
2
O
3
as a typical representative have become research hotspot in the field of microelectronics and optoelectronics because of their excellent electrical and optoelectronic properties, especially their unique characteristics such as intrinsic solar-blind, high temperature resistance, high pressure resistance and good chemical stability, which makes such materials show great potential in the field of solar-blind ultraviolet photodetectors. In view of this, this article reviews the research progress in the past five years of gallium-based oxide films such as Ga
2
O
3
with different crystal structures, gallate oxide, gallium aluminum (or tin, indium) oxide and their solar blind ultraviolet detectors.
日盲紫外探测器Ga2O3镓基氧化物镓酸盐氧化物含镓三元合金氧化物
solar-blindultraviolet photodetectorsgallium oxidegallium-based oxidegallate oxidegallium containing ternary oxides
CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors [J]. Photonics Res., 2019, 7(4): 381-415. doi: 10.1364/prj.7.000381http://dx.doi.org/10.1364/prj.7.000381
XU J J, ZHENG W, HUANG F. Gallium oxide solar-blind ultraviolet photodetectors: a review [J]. J. Mater. Chem. C, 2019, 7(29): 8753-8770. doi: 10.1039/c9tc02055ahttp://dx.doi.org/10.1039/c9tc02055a
VARSHNEY U, AGGARWAL N, GUPTA G. Current advances in solar-blind photodetection technology: using Ga2O3 and AlGaN [J]. J. Mater. Chem. C, 2022, 10(5): 1573-1593. doi: 10.1039/d1tc05101fhttp://dx.doi.org/10.1039/d1tc05101f
郭道友, 李培刚, 陈政委, 等. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展 [J]. 物理学报, 2019, 68(7): 078501-1-36. doi: 10.7498/aps.68.20181845http://dx.doi.org/10.7498/aps.68.20181845
GUO D Y, LI P G, CHEN Z W, et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector [J]. Acta Phys. Sinica, 2019, 68(7): 078501-1-36. (in Chinese). doi: 10.7498/aps.68.20181845http://dx.doi.org/10.7498/aps.68.20181845
王江, 罗林保. 基于氧化镓日盲紫外光电探测器的研究进展 [J]. 中国激光, 2021, 48(11): 1100001-1-31. doi: 10.3788/cjl202148.1100001http://dx.doi.org/10.3788/cjl202148.1100001
WANG J, LUO L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors [J]. Chin. J. Lasers, 2021, 48(11): 1100001-1-31. (in Chinese). doi: 10.3788/cjl202148.1100001http://dx.doi.org/10.3788/cjl202148.1100001
LI M Q, YANG N, WANG G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application [J]. Appl. Surf. Sci., 2019, 471: 694-702. doi: 10.1016/j.apsusc.2018.12.045http://dx.doi.org/10.1016/j.apsusc.2018.12.045
VURA S, MUAZZAM UUL, KUMAR V, et al. Monolithic epitaxial integration of β-Ga2O3 with 100 Si for deep ultraviolet photodetectors [J]. ACS Appl. Electron. Mater., 2022, 4(4): 1619-1625. doi: 10.1021/acsaelm.1c01296http://dx.doi.org/10.1021/acsaelm.1c01296
MA Y J, FENG B Y, ZHANG X D, et al. High-performance β-Ga2O3 solar-blind ultraviolet photodetectors epitaxially grown on (110) TiO2 substrates by metalorganic chemical vapor deposition [J]. Vacuum, 2021, 191: 110402. doi: 10.1016/j.vacuum.2021.110402http://dx.doi.org/10.1016/j.vacuum.2021.110402
CHEN X R, MI W, WU J W, et al. A solar-blind photodetector based on β-Ga2O3 film deposited on MgO (100) substrates by RF magnetron sputtering [J]. Vacuum, 2020, 180: 109632-1-5. doi: 10.1016/j.vacuum.2020.109632http://dx.doi.org/10.1016/j.vacuum.2020.109632
WANG J, YE L J, WANG X, et al. High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector [J]. J. Alloys Compd., 2019, 803: 9-15. doi: 10.1016/j.jallcom.2019.06.224http://dx.doi.org/10.1016/j.jallcom.2019.06.224
SHEN H, BASKARAN K, YIN Y N, et al. Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films [J]. J. Alloys Compd., 2020, 822: 153419-1-7. doi: 10.1016/j.jallcom.2019.153419http://dx.doi.org/10.1016/j.jallcom.2019.153419
REN Q H, XU W H, SHEN Z H, et al. Solar-blind photodetector based on single crystal Ga2O3 film prepared by a unique ion-cutting process [J]. ACS Appl. Electron. Mater., 2021, 3(1): 451-460. doi: 10.1021/acsaelm.0c00990http://dx.doi.org/10.1021/acsaelm.0c00990
LI Y N, LI Y Q, JI Y, et al. Sol-gel preparation of Sn doped gallium oxide films for application in solar-blind ultraviolet photodetectors [J]. J. Mater. Sci., 2022, 57(2): 1186-1197. doi: 10.1007/s10853-021-06680-whttp://dx.doi.org/10.1007/s10853-021-06680-w
JANG H E, CHO H H, YU H K, et al. Synthesis of polycrystalline gallium oxide solar-blind ultraviolet photodetector by aerosol deposition [J]. J. Eur. Ceram. Soc., 2023, 43(6): 2534-2540. doi: 10.1016/j.jeurceramsoc.2023.01.040http://dx.doi.org/10.1016/j.jeurceramsoc.2023.01.040
XU Y, CHENG Y L, LI Z, et al. Ultrahigh-performance solar-blind photodetectors based on high quality heteroepitaxial single crystalline β-Ga2O3 film grown by vacuumfree, low-cost mist chemical vapor deposition [J]. Adv. Mater. Technol., 2021, 6(6): 2001296-1-11. doi: 10.1002/admt.202001296http://dx.doi.org/10.1002/admt.202001296
DING M F, LIANG K, YU S J, et al. Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array [J]. Adv. Opt. Mater., 2022, 10(16): 2200512-1-9. doi: 10.1002/adom.202200512http://dx.doi.org/10.1002/adom.202200512
SUN X, LIU K W, CHEN X, et al. Structural and optoelectronic characteristics of β-Ga2O3 epitaxial films with Zn alloying and subsequent oxygen annealing [J]. J. Mater. Chem. C, 2023, 11(9): 3227-3234. doi: 10.1039/d2tc05204khttp://dx.doi.org/10.1039/d2tc05204k
MA M H, ZHANG D, LI Y Q, et al. High-performance solar blind ultraviolet photodetector based on single crystal orientation Mg-alloyed Ga2O3 film grown by a nonequilibrium MOCVD scheme [J]. ACS Appl. Electron. Mater., 2019, 1(8): 1653-1659. doi: 10.1021/acsaelm.9b00343http://dx.doi.org/10.1021/acsaelm.9b00343
ZHANG H, DENG J X, ZHANG Q, et al. Trace amount of niobium doped β-Ga2O3 deep ultraviolet photodetector with enhanced photo-response [J]. Optik, 2021, 243: 167353. doi: 10.1016/j.ijleo.2021.167353http://dx.doi.org/10.1016/j.ijleo.2021.167353
JEONG S H, VU T K O, KIM E K. Post-annealing effects on Si-doped Ga2O3 photodetectors grown by pulsed laser deposition [J]. J. Alloys Compd., 2021, 877: 160291-1-6. doi: 10.1016/j.jallcom.2021.160291http://dx.doi.org/10.1016/j.jallcom.2021.160291
FAN M M, LU Y J, XU K L, et al. Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection [J]. Appl. Surf. Sci., 2020, 509: 144867-1-8. doi: 10.1016/j.apsusc.2019.144867http://dx.doi.org/10.1016/j.apsusc.2019.144867
CHEN R R, WANG D, LIU J, et al. Ta-doped Ga2O3 epitaxial films on porous p-GaN substrates: structure and self-powered solar-blind photodetectors [J]. Cryst. Growth Des., 2022, 22(9): 5285-5292. doi: 10.1021/acs.cgd.2c00401http://dx.doi.org/10.1021/acs.cgd.2c00401
LIU W M, ZHU X D, HE J B, et al. Atomic-layer-Ti-doped Ga2O3 thin films with tunable optical properties and wide ultraviolet optoelectronic responses [J]. Phys. Status Solidi Rapid Res. Lett., 2021, 15(11): 2100411. doi: 10.1002/pssr.202100411http://dx.doi.org/10.1002/pssr.202100411
CHEN Y C, LU Y J, LIU Q, et al. Ga2O3 photodetector arrays for solar-blind imaging [J]. J. Mater. Chem. C, 2019, 7(9): 2557-2562. doi: 10.1039/c8tc05251dhttp://dx.doi.org/10.1039/c8tc05251d
PRATIYUSH A S, UL MUAZZAM U, KUMAR S, et al. Optical float-zone grown bulk β-Ga2O3-based linear MSM array of UV-C photodetectors [J]. IEEE Photonics Technol. Lett., 2019, 31(12): 923-926. doi: 10.1109/lpt.2019.2913286http://dx.doi.org/10.1109/lpt.2019.2913286
XIE C, LU X T, LIANG Y, et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application [J]. J. Mater. Sci. Technol., 2021, 72: 189-196. doi: 10.1016/j.jmst.2020.09.015http://dx.doi.org/10.1016/j.jmst.2020.09.015
ZHI Y S, LIU Z, ZHANG S H, et al. 16×4 Linear solar-blind UV photoconductive detector array based on β-Ga2O3 film [J]. IEEE Trans. Electron Devices, 2021, 68(7): 3435-3438. doi: 10.1109/ted.2021.3081522http://dx.doi.org/10.1109/ted.2021.3081522
CHEN X H, MU W X, XU Y, et al. Highly narrow-band polarization-sensitive solar-blind photodetectors based on β-Ga2O3 single crystals [J]. ACS Appl. Mater. Interfaces, 2019, 11(7): 7131-7137. doi: 10.1021/acsami.8b19524http://dx.doi.org/10.1021/acsami.8b19524
ZHANG C, LIU K W, AI Q, et al. High-performance fully transparent Ga2O3 solar-blind UV photodetector with the embedded indium-tin-oxide electrodes [J]. Mater. Today Phys., 2023, 33: 101034. doi: 10.1016/j.mtphys.2023.101034http://dx.doi.org/10.1016/j.mtphys.2023.101034
HOU C X, GAZONI R M, REEVES R J, et al. High-temperature β-Ga2O3 schottky diodes and UVC photodetectors using RuOx contacts [J]. IEEE Electron Device Lett., 2019, 40(10): 1587-1590. doi: 10.1109/led.2019.2937494http://dx.doi.org/10.1109/led.2019.2937494
LI Z, CHENG Y N, XU Y, et al. High-performance β-Ga2O3 solar-blind schottky barrier photodiode with record detectivity and ultrahigh gain via carrier multiplication process [J]. IEEE Electron Device Lett., 2020, 41(12): 1794-1797. doi: 10.1109/led.2020.3032290http://dx.doi.org/10.1109/led.2020.3032290
WU D, ZHAO Z H, LU W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/ β-Ga2O3 2D/3D Schottky junction with ultrafast speed [J]. Nano Res., 2021, 14(6): 1973-1979. doi: 10.1007/s12274-021-3346-7http://dx.doi.org/10.1007/s12274-021-3346-7
PARK T, PARK S, PARK J H, et al. Temperature-dependent self-powered solar-blind photodetector based on Ag2O/ β-Ga2O3 heterojunction [J]. Nanomaterials, 2022, 12(17): 2983-1-16. doi: 10.3390/nano12172983http://dx.doi.org/10.3390/nano12172983
ZHAO B W, LI K K, LIU Q, et al. Ultrasensitive self-powered deep-ultraviolet photodetector based on in situ epitaxial Ga2O3/Bi2Se3 heterojunction [J]. IEEE Trans. Electron Devices, 2022, 69(4): 1894-1899. doi: 10.1109/ted.2022.3154682http://dx.doi.org/10.1109/ted.2022.3154682
YANG L L, PENG Y S, LIU Z, et al. A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse [J]. Chin. Phys. B, 2023, 32(4): 047301-1-8. doi: 10.1088/1674-1056/ac7865http://dx.doi.org/10.1088/1674-1056/ac7865
QI X H, JI X Q, YUE J Y, et al. A deep-ultraviolet photodetector of a hybrid organic-inorganic p-CoPc/n-Ga2O3 heterostructure highlighting ultra-sensitive [J]. Crystals, 2022, 12(9): 1284-1-11. doi: 10.3390/cryst12091284http://dx.doi.org/10.3390/cryst12091284
SHI J J, LIANG H W, XIA X C, et al. Band alignment analysis of CuGaO2/β-Ga2O3 heterojunction and application to deep-UV photodetector [J]. Appl. Surf. Sci., 2021, 569: 151010-1-6. doi: 10.1016/j.apsusc.2021.151010http://dx.doi.org/10.1016/j.apsusc.2021.151010
LIU Y Z, SHEN L Y, PAN X H, et al. Self-powered solar-blind deep-UV photodetector based on CuI/Ga2O3 heterojunction with high sensitivity [J]. Sens. Actuators A Phys., 2023, 349: 114068. doi: 10.1016/j.sna.2022.114068http://dx.doi.org/10.1016/j.sna.2022.114068
WU C, QIU L L, LI S, et al. High sensitive and stable self-powered solar-blind photodetector based on solution-processed all inorganic CuMO2/Ga2O3 pn heterojunction [J]. Mater. Today Phys., 2021, 17: 100335. doi: 10.1016/j.mtphys.2020.100335http://dx.doi.org/10.1016/j.mtphys.2020.100335
PARK S, YOON Y, KIM H, et al. A self-powered high-responsivity, fast-response-speed solar-blind ultraviolet photodetector based on CuO/β-Ga2O3 heterojunction with built-in potential control [J]. Nanomaterials, 2023, 13(5): 954-1-19. doi: 10.3390/nano13050954http://dx.doi.org/10.3390/nano13050954
ZHAO T L, HE H L, WU C, et al. Nanoscale-thick CuPc/β-Ga2O3 p-n junctions for harsh-environment-resistant self-powered deep-UV photodetectors [J]. ACS Appl. Nano Mater., 2023, 6(5): 3856-3862. doi: 10.1021/acsanm.2c05499http://dx.doi.org/10.1021/acsanm.2c05499
LV Z X, YAN S Q, MU W X, et al. A high responsivity and photosensitivity self-powered UV photodetector constructed by the CuZnS/Ga2O3 heterojunction [J]. Adv. Mater. Interfaces, 2023, 10(5): 2202130-1-9. doi: 10.1002/admi.202202130http://dx.doi.org/10.1002/admi.202202130
HAN Y R, WANG Y F, XIA D Y, et al. Rapid response solar blind deep UV photodetector with high detectivity based on graphene: N/βGa2O3:N/GaN p-i-n heterojunction fabricated by a reversed substitution growth method [J]. Small Methods, 2023, 7(7): 2300041. doi: 10.1002/smtd.202300041http://dx.doi.org/10.1002/smtd.202300041
CHEN W C, XU X Y, LI M H, et al. A fast self-powered solar-blind ultraviolet photodetector realized by Ga2O3/GaN PIN heterojunction with a fully depleted active region [J]. Adv. Opt. Mater., 2023, 11(8): 2202847. doi: 10.1002/adom.202202847http://dx.doi.org/10.1002/adom.202202847
WANG Y H, TANG Y Q, LI H R, et al. p-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity [J]. ACS Photonics, 2021, 8(8): 2256-2264. doi: 10.1021/acsphotonics.1c00015http://dx.doi.org/10.1021/acsphotonics.1c00015
YAN Z Y, LI S, LIU Z, et al. High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p-n heterojunction [J]. J. Mater. Chem. C, 2020, 8(13): 4502-4509. doi: 10.1039/c9tc06767ahttp://dx.doi.org/10.1039/c9tc06767a
CUI Y H, ZHANG S H, SHI Q S, et al. Preparation of all-oxide β-Ga2O3/α-MoO3 heterojunction towards self-driven deep ultraviolet photosensor [J]. Phys. Scr., 2021, 96(12): 125844. doi: 10.1088/1402-4896/ac30a8http://dx.doi.org/10.1088/1402-4896/ac30a8
SHARMA M, SINGH A, KAPOOR A, et al. Ultraflexible and transparent MoS2/β-Ga2O3 heterojunction-based photodiode with enhanced photoresponse by piezo-phototronic effect [J]. ACS Appl. Electron. Mater., 2023, 5(4): 2296-2308. doi: 10.1021/acsaelm.3c00120http://dx.doi.org/10.1021/acsaelm.3c00120
ZENG G, ZHANG M R, CHEN Y C, et al. A solar-blind photodetector with ultrahigh rectification ratio and photoresponsivity based on the MoTe2/Ta:β-Ga2O3 pn junction [J]. Mater. Today Phys., 2023, 33: 101042-1-27. doi: 10.1016/j.mtphys.2023.101042http://dx.doi.org/10.1016/j.mtphys.2023.101042
YU J G, YU M, WANG Z, et al. Improved photoresponse performance of self-powered β-Ga2O3/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles [J]. IEEE Trans. Electron Devices, 2020, 67(8): 3199-3204. doi: 10.1109/ted.2020.2999027http://dx.doi.org/10.1109/ted.2020.2999027
DING M F, HAO W B, YU S J, et al. Self-powered p-NiO/n-Ga2O3 heterojunction solar-blind photodetector with record detectivity and open circuit voltage [J]. IEEE Electron Device Lett., 2023, 44(2): 277-280. doi: 10.1109/led.2022.3227583http://dx.doi.org/10.1109/led.2022.3227583
JIA M H, WANG F, TANG L B, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction [J]. Nanoscale Res. Lett., 2020, 15(1): 47-1-6. doi: 10.1186/s11671-020-3271-9http://dx.doi.org/10.1186/s11671-020-3271-9
VASQUEZ J M T, ASHAI A, LU Y, et al. A self-powered and broadband UV PIN photodiode employing a NiOx layer and a β-Ga2O3 heterojunction [J]. J. Phys. D Appl. Phys., 2023, 56(6): 065104-1-18. doi: 10.1088/1361-6463/acaed7http://dx.doi.org/10.1088/1361-6463/acaed7
TANG X, LU Y, LIN R Y, et al. Flexible self-powered DUV photodetectors with high responsivity utilizing Ga2O3/NiO heterostructure on buffered Hastelloy substrates [J]. Appl. Phys. Lett., 2023, 122(12): 121101-1-5. doi: 10.1063/5.0146030http://dx.doi.org/10.1063/5.0146030
HE T, LI C, ZHANG X D, et al. Metalorganic chemical vapor deposition heteroepitaxial β-Ga2O3 and black phosphorus Pn heterojunction for solar-blind ultraviolet and infrared dual-band photodetector [J]. Phys. Status Solidi A Appl. Mater. Sci., 2020, 217(2): 1900861-1-6. doi: 10.1002/pssa.201900861http://dx.doi.org/10.1002/pssa.201900861
LI S, YAN Z Y, LIU Z, et al. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT∶PSS/Ga2O3 organic-inorganic hybrid heterojunction [J]. J. Mater. Chem. C, 2020, 8(4): 1292-1300. doi: 10.1039/c9tc06011ahttp://dx.doi.org/10.1039/c9tc06011a
NAKAGOMI S, SAKAI T, KIKUCHI K, et al. β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes [J]. Phys. Status Solidi A Appl. Mater. Sci., 2019, 216(5): 1700796-1-8. doi: 10.1002/pssa.201700796http://dx.doi.org/10.1002/pssa.201700796
QI X H, LIU Z, JI X Q, et al. Enhanced ultraviolet detection by constructing Ga2O3/TiO2 heterojunction photodiode featuring weak light signal sensing [J]. IEEE Sensors J., 2023, 23(3): 2055-2062. doi: 10.1109/jsen.2022.3231656http://dx.doi.org/10.1109/jsen.2022.3231656
LI S, YAN Z Y, TANG J C, et al. Ga2O3/V2O5 oxide heterojunction photovoltaic photodetector with superhigh solar-blind spectral discriminability [J]. IEEE Trans. Electron Devices, 2022, 69(5): 2443-2448. doi: 10.1109/ted.2022.3156891http://dx.doi.org/10.1109/ted.2022.3156891
LI S, YUE J Y, WU C, et al. Self-powered ultraviolet photodetector based on β-Ga2O3/WO3 NPs heterojunction with low noise and high visible rejection [J]. IEEE Sensors J., 2021, 21(23): 26724-26730. doi: 10.1109/jsen.2021.3121803http://dx.doi.org/10.1109/jsen.2021.3121803
MA J L, XIA X C, YAN S, et al. Stable and self-powered solar-blind ultraviolet photodetectors based on a Cs3Cu2I5/ β-Ga2O3 heterojunction prepared by dual-source vapor codeposition [J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15409-15419. doi: 10.1021/acsami.1c00387http://dx.doi.org/10.1021/acsami.1c00387
WANG G B, PANG T Q, SUN K, et al. High-performance layer-structured Si/Ga2O3/CH3NH3PbI3 heterojunction photodetector based on a Ga2O3 buffer interlayer [J]. Appl. Opt., 2023, 62(6): A76-A82. doi: 10.1364/ao.472922http://dx.doi.org/10.1364/ao.472922
ZHANG Z Y L, BA Y S, CHEN D Z, et al. Enhancing the UV response of all-inorganic perovskite photodetectors by introducing the mist-CVD-grown gallium oxide layer [J]. Appl. Sci., 2023, 13(2): 1112-1-10. doi: 10.3390/app13021112http://dx.doi.org/10.3390/app13021112
KIM H, TARELKIN S, POLYAKOV A, et al. Ultrawide-bandgap p-n heterojunction of diamond/β-Ga2O3 for a solar-blind photodiode [J]. ECS J. Solid State Sci. Technol., 2020, 9(4): 045004-1-19. doi: 10.1149/2162-8777/ab89b8http://dx.doi.org/10.1149/2162-8777/ab89b8
DONG L P, PANG T Q, YU J G, et al. Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/ β-Ga2O3 hybrid structure [J]. J. Mater. Chem. C, 2019, 7(45): 14205-14211. doi: 10.1039/c9tc05115ehttp://dx.doi.org/10.1039/c9tc05115e
LI K H, ALFARAJ N, KANG C H, et al. Deep-ultraviolet photodetection using single-crystalline β-Ga2O3/NiO heterojunctions [J]. ACS Appl. Mater. Interfaces, 2019, 11(38): 35095-35104. doi: 10.1021/acsami.9b10626http://dx.doi.org/10.1021/acsami.9b10626
MOLONEY J, TESH O, SINGH M, et al. Atomic layer deposited α-Ga2O3 solar-blind photodetectors [J]. J. Phys. D Appl. Phys., 2019, 52(47): 475101-1-7. doi: 10.1088/1361-6463/ab3b76http://dx.doi.org/10.1088/1361-6463/ab3b76
BAE J, PARK J H, JEON D W, et al. Self-powered solar-blind α-Ga2O3 thin-film UV-C photodiode grown by halide vapor-phase epitaxy [J]. APL Mater., 2021, 9(10): 101108. doi: 10.1063/5.0067133http://dx.doi.org/10.1063/5.0067133
SUN X Y, CHEN X H, HAO J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p-n heterojunction [J]. Appl. Phys. Lett., 2021, 119(14): 141601-1-7. doi: 10.1063/5.0059061http://dx.doi.org/10.1063/5.0059061
QIN Y, LI L H, ZHAO X L, et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism [J]. ACS Photonics, 2020, 7(3): 812-820. doi: 10.1021/acsphotonics.9b01727http://dx.doi.org/10.1021/acsphotonics.9b01727
LIU Z, HUANG Y Q, LI H R, et al. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector [J]. Vacuum, 2020, 177: 109425-1-5. doi: 10.1016/j.vacuum.2020.109425http://dx.doi.org/10.1016/j.vacuum.2020.109425
YAN Z Y, LI S, LIU Z, et al. Ti3C2/ϵ-Ga2O3 schottky self-powered solar-blind photodetector with robust responsivity [J]. IEEE J. Sel. Top. Quantum Electron., 2022, 28(2): 3803208-1-8. doi: 10.1109/jstqe.2021.3124824http://dx.doi.org/10.1109/jstqe.2021.3124824
WANG W, YUAN Q L, HAN D Y, et al. High-temperature deep ultraviolet photodetector based on a crystalline Ga2O3-diamond heterostructure [J]. IEEE Electron Device Lett., 2022, 43(12): 2121-2124. doi: 10.1109/led.2022.3214981http://dx.doi.org/10.1109/led.2022.3214981
ZHANG W R, WANG W, ZHANG J F, et al. Directional carrier transport in micrometer-thick gallium oxide films for high-performance deep-ultraviolet photodetection [J]. ACS Appl. Mater. Interfaces, 2023, 15(8): 10868-10876. doi: 10.1021/acsami.3c00124http://dx.doi.org/10.1021/acsami.3c00124
FEI Z Y, CHEN Z M, CHEN W Q, et al. ε-Ga2O3 thin films grown by metal-organic chemical vapor deposition and its application as solar-blind photodetectors [J]. J. Alloys Compd., 2022, 925: 166632-1-7. doi: 10.1016/j.jallcom.2022.166632http://dx.doi.org/10.1016/j.jallcom.2022.166632
CUI M, XU Y, SUN X Y, et al. Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga2O3 solar-blind detectors with high rejection ratios [J]. J. Phys. D Appl. Phys., 2022, 55(39): 394003. doi: 10.1088/1361-6463/ac7f68http://dx.doi.org/10.1088/1361-6463/ac7f68
BORELLI C, BOSIO A, PARISINI A, et al. Electronic properties and photo-gain of UV-C photodetectors based on high-resistivity orthorhombic κ-Ga2O3 epilayers [J]. Mater. Sci. Eng. B, 2022, 286: 116056-1-9. doi: 10.1016/j.mseb.2022.116056http://dx.doi.org/10.1016/j.mseb.2022.116056
LIM N, MIN J, MIN J H, et al. Ultrasensitive UV-C detection based on MOCVD-grown highly crystalline ultrawide bandgap orthorhombic κ-Ga2O3 [J]. Appl. Surf. Sci., 2023, 609: 155350-1-19. doi: 10.1016/j.apsusc.2022.155350http://dx.doi.org/10.1016/j.apsusc.2022.155350
CHEN Y C, LU Y J, LIAO M Y, et al. 3D solar-blind Ga2O3 photodetector array realized via origami method [J]. Adv. Funct. Mater., 2019, 29(50): 1906040-1-8. doi: 10.1002/adfm.201906040http://dx.doi.org/10.1002/adfm.201906040
KUMAR N, ARORA K, KUMAR M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes [J]. J. Phys. D Appl. Phys., 2019, 52(33): 335103-1-9. doi: 10.1088/1361-6463/ab236fhttp://dx.doi.org/10.1088/1361-6463/ab236f
ZHOU C Q, LIU K W, CHEN X, et al. Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere [J]. J. Alloys Compd., 2020, 840: 155585. doi: 10.1016/j.jallcom.2020.155585http://dx.doi.org/10.1016/j.jallcom.2020.155585
QIN Y, LI L H, YU Z A, et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging [J]. Adv. Sci., 2021, 8(20): 2101106. doi: 10.1002/advs.202101106http://dx.doi.org/10.1002/advs.202101106
WANG S L, WU C, WU F M, et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices [J]. Sens. Actuators A Phys., 2021, 330: 112870-1-7. doi: 10.1016/j.sna.2021.112870http://dx.doi.org/10.1016/j.sna.2021.112870
JI X Q, YIN X M, YUAN Y Z, et al. Amorphous Ga2O3 Schottky photodiodes with high-responsivity and photo-to-dark current ratio [J]. J. Alloys Compd., 2023, 933: 167735-1-7. doi: 10.1016/j.jallcom.2022.167735http://dx.doi.org/10.1016/j.jallcom.2022.167735
WANG Y H, YANG Z B, LI H R, et al. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions [J]. ACS Appl. Mater. Interfaces, 2020, 12(42): 47714-47720. doi: 10.1021/acsami.0c10259http://dx.doi.org/10.1021/acsami.0c10259
WANG Y H, LI H R, CAO J, et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction [J]. ACS Nano, 2021, 15(10): 16654-16663. doi: 10.1021/acsnano.1c06567http://dx.doi.org/10.1021/acsnano.1c06567
WANG H, MA J, CONG L, et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction [J]. Mater. Today Phys., 2021, 20: 100464. doi: 10.1016/j.mtphys.2021.100464http://dx.doi.org/10.1016/j.mtphys.2021.100464
SOOD A, TARNTAIR F G, WANG Y X, et al. Performance enhancement of ZnGa2O4 Schottky type deep-ultraviolet photodetectors by oxygen supercritical fluid treatment [J]. Results Phys., 2021, 29: 104764. doi: 10.1016/j.rinp.2021.104764http://dx.doi.org/10.1016/j.rinp.2021.104764
HORNG R H, HUANG P H, LI Y S, et al. Reliability study on deep-ultraviolet photodetectors based on ZnGa2O4 epilayers grown by MOCVD [J]. Appl. Surf. Sci., 2021, 555: 149657-1-5. doi: 10.1016/j.apsusc.2021.149657http://dx.doi.org/10.1016/j.apsusc.2021.149657
HAN D Y, LIU K W, CHEN X, et al. Performance enhancement of a self-powered solar-blind UV photodetector based on ZnGa2O4/Si heterojunction via interface pyroelectric effect [J]. Appl. Phys. Lett., 2021, 118(25): 251101-1-8. doi: 10.1063/5.0049747http://dx.doi.org/10.1063/5.0049747
HAN D Y, LIU K W, YANG J L, et al. Performance enhancement of a p-Si/n-ZnGa2O4 heterojunction solar-blind UV photodetector through interface engineering [J]. J. Mater. Chem. C, 2021, 9(31): 10013-10019. doi: 10.1039/d1tc01705ehttp://dx.doi.org/10.1039/d1tc01705e
ZHU Y X, LIU K W, HUANG X Q, et al. Self-powered p-GaN/i-ZnGa2O4/n-ITO heterojunction broadband ultraviolet photodetector with high working temperature [J]. IEEE Electron Device Lett., 2023, 44(5): 737-740. doi: 10.1109/led.2023.3262755http://dx.doi.org/10.1109/led.2023.3262755
HOU Q C, LIU K W, HAN D Y, et al. MOCVD growth of MgGa2O4 thin films for high-performance solar-blind UV photodetectors [J]. Appl. Phys. Lett., 2022, 120(1): 011101-1-6. doi: 10.1063/5.0077904http://dx.doi.org/10.1063/5.0077904
HOU Q C, LIU K W, CHEN X, et al. Effects of Mg component ratio on photodetection performance of MgGa2O4 solar-blind ultraviolet photodetectors [J]. Phys. Status Solidi Rapid Res. Lett., 2022, 16(8): 2200137-1-6. doi: 10.1002/pssr.202200137http://dx.doi.org/10.1002/pssr.202200137
MUKHOPADHYAY P, SCHOENFELD W V. Tin gallium oxide solar-blind photodetectors on sapphire grown by molecular beam epitaxy [J]. Appl. Opt., 2019, 58(13): D22-D27. doi: 10.1364/ao.58.000d22http://dx.doi.org/10.1364/ao.58.000d22
MUKHOPADHYAY P, SCHOENFELD W V. High responsivity tin gallium oxide Schottky ultraviolet photodetectors [J]. J. Vac. Sci. Technol. A, 2020, 38(1): 013403-1-5. doi: 10.1116/1.5128911http://dx.doi.org/10.1116/1.5128911
MUKHOPADHYAY P, HATIPOGLU I, FRODASON Y K, et al. Role of defects in ultra-high gain in fast planar tin gallium oxide UV-C photodetector by MBE [J]. Appl. Phys. Lett., 2022, 121(11): 111105-1-8. doi: 10.1063/5.0107557http://dx.doi.org/10.1063/5.0107557
ZHANG D, LIN W M, LIU S X, et al. Ultra-robust deep-UV photovoltaic detector based on graphene/(AlGa)2O3/GaN with high-performance in temperature fluctuations [J]. ACS Appl. Mater. Interfaces, 2019, 11(51): 48071-48078. doi: 10.1021/acsami.9b18352http://dx.doi.org/10.1021/acsami.9b18352
LI Y Q, ZHANG D, JIA L M, et al. Ultrawide-bandgap(6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection [J]. Sci. China Mater., 2021, 64(12): 3027-3036. doi: 10.1007/s40843-021-1698-3http://dx.doi.org/10.1007/s40843-021-1698-3
陈星(1984-),男,湖北荆门人,博士,研究员,博士生导师,2012年于中国科学院大连化学物理研究所获得博士学位,主要从事宽禁带半导体光电材料与器件方面的研究。. doi: 10.1007/s40843-021-1698-3http://dx.doi.org/10.1007/s40843-021-1698-3
0
Views
343
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution