1.成都大学 机械工程学院, 四川 成都 610106
2.成都理工大学 材料与化学化工学院, 四川 成都 610059
3.昆明理工大学 材料科学与工程学院, 云南省新材料制备与加工重点实验室, 云南 昆明 650093
4.交通运输部南海航海保障中心 北海航标处, 广西 北海 536000
扫 描 看 全 文
岳杨,郭龙超,刘昊哲等.双钙钛矿Ba2LuNbO6∶Tb3+闪烁体多模式X射线探测[J].发光学报,2023,44(09):1597-1605.
YUE Yang,GUO Longchao,LIU Haozhe,et al.Multimode X-ray Detection of Double Perovskite Ba2LuNbO6∶Tb3+ Scintillators[J].Chinese Journal of Luminescence,2023,44(09):1597-1605.
岳杨,郭龙超,刘昊哲等.双钙钛矿Ba2LuNbO6∶Tb3+闪烁体多模式X射线探测[J].发光学报,2023,44(09):1597-1605. DOI: 10.37188/CJL.20230121.
YUE Yang,GUO Longchao,LIU Haozhe,et al.Multimode X-ray Detection of Double Perovskite Ba2LuNbO6∶Tb3+ Scintillators[J].Chinese Journal of Luminescence,2023,44(09):1597-1605. DOI: 10.37188/CJL.20230121.
采用高温固相法制备了双钙钛矿结构的Ba,2,LuNbO,6,∶,x,Tb,3+,(,x, = 0.01,0.02,0.05,0.10,0.20)闪烁体材料,并系统地研究了其晶体结构、形貌和X射线激发的光学性能。研究表明,在X射线激发下,Ba,2,LuNbO,6,∶Tb,3+,的发射光谱主要由Tb,3+,的特征发射组成,其中最强发射峰位于545 nm处。X射线发射(RL)强度随Tb,3+,浓度的增加逐渐增大,当,x ,= 0.1时发射强度达到最大值。此外,X射线辐照5 min后的热释光(TL)曲线显示该样品存在位于,T,1,(377 K)和,T,2,(460 K)的两个陷阱。其陷阱深度分别为0.754 eV和0.920 eV,这表明该材料具有潜在的X射线信息存储性能。因此,我们可通过加热或者980 nm激光二极管激发,有效诱导读出存储在深陷阱中的载流子,实现高亮度光激励发光(PSL)和热刺激发光(TSL)。基于此,由Ba,2,LuNbO,6,∶Tb,3+,与聚二甲基硅氧烷(PDMS)所制备的柔性闪烁体薄膜,在低X射线剂量辐照下表现出优异的X射线成像分辨率(12.5 lp/mm)以及延时成像特性。以上结果表明,所制备的Ba,2,LuNbO,6,∶0.1Tb,3+,在X射线探测和X射线信息存储方面具有潜在的应用前景。
In this paper, scintillator Ba,2,LuNbO,6,∶Tb,3+,(,x, = 0.01, 0.02, 0.05, 0.10, 0.20) phosphors with double perovskite structure were synthesized by the traditional high temperature solid state method. The crystal structure, morphology, and optical properties of the as-obtained Ba,2,LuNbO,6,∶Tb,3+, phosphors were investigated in detail. Under X-ray excitation, the radiation luminescence (RL) spectra of Ba,2,LuNbO,6,∶0.1Tb,3+, phosphor exhibit the characteristic emissions of Tb,3+, ions, and the strongest emission peak is dominantly located at 545 nm. The RL intensity gradually increases with the increased concentration of Tb,3+, ions, and achieves the optimized intensity when ,x ,= 0.1. In addition, the thermoluminescence (TL) curve of Ba,2,LuNbO,6,∶0.1Tb,3+, phosphors after X-ray irradiation for 5 min, manifest that there are two deep traps, located at ,T,1,(377 K) and ,T,2,(460 K), respectively. The corresponding trap depths are respectively calculated to be 0.754 eV and 0.920 eV, which indicates that the as-explored sample performs a potential optical storage performance. Moreover, the captured carriers captured by deep traps could be released induced by thermal stimulus and the 980 nm laser, and then resulting in bright photo-stimulated luminescence (PSL) and thermal-stimulated luminescence (TSL) behaviors, respectively. Furthermore, the flexible scintillator film encapsulated with Ba,2,LuNbO,6,∶Tb,3+, phosphor and PDMS shows high X-ray imaging resolution(12.5 lp/mm) and time-delay imaging characteristics at low radiation dose, demonstrating that the as-fabricated Ba,2,LuNbO,6,∶0.1Tb,3+, phosphors exhibit potential application prospect in X-ray detection and X-ray information storage.
闪烁体Tb3+离子X射线探测Ba2LuNbO6
scintillatorsTb3+ ionsX-ray detectionBa2LuNbO6
BÜCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors [J]. Nat. Photonics, 2015, 9(12): 843-848. doi: 10.1038/nphoton.2015.216http://dx.doi.org/10.1038/nphoton.2015.216
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators [J]. Nature, 2018, 561(7721): 88-93. doi: 10.1038/s41586-018-0451-1http://dx.doi.org/10.1038/s41586-018-0451-1
CAO F, YU D J, MA W B, et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept [J]. ACS Nano, 2019, 14(5): 5183-5193. doi: 10.1021/acsnano.9b06114http://dx.doi.org/10.1021/acsnano.9b06114
彭庆朋, 季涛, 王玮, 等. ZnS量子点微晶玻璃用于X射线高分辨率成像 [J]. 硅酸盐学报, 2022, 50(11): 2934-2940.
PENG Q P, JI T, WANG W, et al. Transparent medium embedded with ZnS quantum dots for X-ray imaging [J]. J. Chin. Ceramic Soc., 2022, 50(11): 2934-2940. (in Chinese)
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging [J]. Nature, 2017, 550(7674): 87-91. doi: 10.1038/nature24032http://dx.doi.org/10.1038/nature24032
LIU J Y, SHABBIR B, WANG C J, et al. Flexible, printable soft‐X‐ray detectors based on all‐inorganic perovskite quantum dots [J]. Adv. Mater., 2019, 31(30): 1901644-1-8. doi: 10.1002/adma.201970214http://dx.doi.org/10.1002/adma.201970214
ZHANG H, YANG Z, ZHOU M, et al. Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure [J]. Adv. Mater., 2021, 33(40): 2102529-1-7. doi: 10.1002/adma.202102529http://dx.doi.org/10.1002/adma.202102529
KANG Z T, ZHANG Y L, MENKARA H, et al. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging [J]. Appl. Phys. Lett., 2011, 98(18): 181914-1-3. doi: 10.1063/1.3589366http://dx.doi.org/10.1063/1.3589366
JUNG I D, CHO M K, LEE S M, et al. Flexible Gd2O2S∶Tb scintillators pixelated with polyethylene microstructures for digital X-ray image sensors [J]. J. Micromech. Microeng., 2009, 19(1): 015014-1-10. doi: 10.1088/0960-1317/19/1/015014http://dx.doi.org/10.1088/0960-1317/19/1/015014
HU Q S, DENG Z Z, HU M C, et al. X-ray scintillation in lead-free double perovskite crystals [J]. Sci. China Chem., 2018, 61(12): 1581-1586. doi: 10.1007/s11426-018-9308-2http://dx.doi.org/10.1007/s11426-018-9308-2
TIAN B R, WANG Z F, SMITH A T, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing [J]. Nano Energy, 2021, 83: 105860. doi: 10.1016/j.nanoen.2021.105860http://dx.doi.org/10.1016/j.nanoen.2021.105860
ZHAO B, CHEN Y Q, XUE Y, et al. Tunable emission color and anti-thermal-quenching behaviors in niobates for high-sensitive optical thermometry [J]. Mater. Des., 2023, 227: 111802. doi: 10.1016/j.matdes.2023.111802http://dx.doi.org/10.1016/j.matdes.2023.111802
XU L, WANG X D, WANG L H, et al. Design of a novel La3Si6N11∶Ce3+ phosphor-in-glass film for high power laser lighting: luminous efficiency toward 200 lm·W-1 [J]. ACS Sustainable Chem. Eng., 2022, 10(38): 12817-12825. doi: 10.1021/acssuschemeng.2c03897http://dx.doi.org/10.1021/acssuschemeng.2c03897
夏天, 曹望和, 罗昔贤, 等. 燃烧法合成Ln2O2S∶RE3+(Ln=Gd, La; RE=Eu, Tb)X射线荧光粉及发光性能 [J]. 发光学报, 2005, 26(2): 194-198.
XIA T, CAO W H, LUO X X, et al. Combustion synthesis and luminescence characteristic of Ln2O2S∶RE3+(Ln=Gd, La; RE=Eu, Tb) X-ray phosphors [J]. Chin. J. Lumin., 2005, 26(2): 194-198. (in Chinese)
王振家, 熊光楠, 滕枫, 等. BaFCl∶Eu2+X射线存储机制的探讨 [J]. 发光学报, 1995, 16(1): 20-26.
WANG Z J, XIONG G N, TENG F, et al. Studying of X-ray storage process in BaFCl∶Eu2+ [J]. Chin. J. Lumin., 1995, 16(1): 20-26. (in Chinese)
FAN Y, JIN X F, WANG M Y, et al. Multimode dynamic photoluminescent anticounterfeiting and encryption based on a dynamic photoluminescent material [J]. Chem. Eng. J., 2020, 393: 124799-1-8. doi: 10.1016/j.cej.2020.124799http://dx.doi.org/10.1016/j.cej.2020.124799
WANG C L, JIN Y H, ZHANG J X, et al. Linear charging-discharging of an ultralong UVA persistent phosphor for advanced optical data storage and wide-wavelength-range detector [J]. Chem. Eng. J., 2023, 453: 139558. doi: 10.1016/j.cej.2022.139558http://dx.doi.org/10.1016/j.cej.2022.139558
ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals [J]. Adv. Opt. Mater., 2020, 8(18): 2000585-1-8. doi: 10.1002/adom.202000585http://dx.doi.org/10.1002/adom.202000585
LI Y, XU S, ZHANG Q, et al. Excitation wavelength-dependent multi-emission in Sb3+/Bi3+/Er3+ codoped perovskite toward optical anti-counterfeiting and information storage [J]. J. Alloys Compd., 2023, 940: 168925. doi: 10.1016/j.jallcom.2023.168925http://dx.doi.org/10.1016/j.jallcom.2023.168925
LI J Y, XIAO J W, LIN T F, et al. Lanthanide doping enabled multimodal luminescence in layered lead-free double perovskite Cs4MnBi2Cl12 [J]. J. Mater. Chem. C, 2022, 10(19): 7626-7632. doi: 10.1039/d2tc01024khttp://dx.doi.org/10.1039/d2tc01024k
CHEN L, WU Y, HUO H Y, et al. Study on the fluorescence properties of micron-submicron-nano BaFBr∶Eu2+ phosphors [J]. New J. Chem., 2020, 44(30): 13118-13124. doi: 10.1039/d0nj02446ehttp://dx.doi.org/10.1039/d0nj02446e
LYU T S, DORENBOS P, XIONG P X, et al. LiTaO3∶Bi3+, Tb3+, Ga3+, Ge4+: a smart perovskite with high charge carrier storage capacity for X-ray imaging, stress sensing, and non-real-time recording [J]. Adv. Funct. Mater., 2022, 32(39): 2206024-1-14. doi: 10.1002/adfm.202206024http://dx.doi.org/10.1002/adfm.202206024
ZHUANG Y X, CHEN D R, CHEN W J, et al. X-ray-charged bright persistent luminescence in NaYF4∶Ln3+@NaYF4 nanoparticles for multidimensional optical information storage [J]. Light: Sci. Appl., 2021, 10(1): 132-1-10. doi: 10.1038/s41377-021-00575-whttp://dx.doi.org/10.1038/s41377-021-00575-w
SHANNON R D. Revised effective Ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst. Sect. A, 1976, 32(5): 751-767. doi: 10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
YANG Y S, WANG K Z, YAN D P. Lanthanide doped coordination polymers with tunable afterglow based on phosphorescence energy transfer [J]. Chem. Commun., 2017, 53(55): 7752-7755. doi: 10.1039/c7cc04356bhttp://dx.doi.org/10.1039/c7cc04356b
MEDIĆ M, RISTIĆ Z, KUZMAN S, et al. Luminescence of Mn4+ activated Li4Ti5O12 [J]. J. Lumin., 2020, 228: 117646-1-8. doi: 10.1016/j.jlumin.2020.117646http://dx.doi.org/10.1016/j.jlumin.2020.117646
FU C J, HU Y H, WANG Y H, et al. Luminescent properties of the Sr2.97-xBaxMgSi2O8∶Euhttps://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312922&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312940&type=3.640666483.72533321,Dyhttps://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312945&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48312943&type=3.640666483.72533321 with different Sr/Ba ratio [J]. J. Alloys Compd., 2010, 502(2): 423-428. doi: 10.1016/j.jallcom.2010.04.188http://dx.doi.org/10.1016/j.jallcom.2010.04.188
YUAN W H, PANG R, WANG S W, et al. Enhanced blue-light excited cyan-emitting persistent luminescence of BaLu2Al2Ga2SiO12∶Ce3+,Bi3+ phosphors for AC-LEDs via defect modulation [J]. Light: Sci. Appl., 2022, 11(1): 184-1-13. doi: 10.1038/s41377-022-00868-8http://dx.doi.org/10.1038/s41377-022-00868-8
ZHANG X, XU X H, HE Q L, et al. Significant improvement of photo-stimulated luminescence of Ba4(Si3O8)2∶Eu2+ by co-doping with Tm3+ [J]. ECS J. Solid State Sci. Technol., 2013, 2(11): R225-R229. doi: 10.1149/2.010311jsshttp://dx.doi.org/10.1149/2.010311jss
WANG T, XU X H, ZHOU D C, et al. Effect of defect distribution on the optical storage properties of strontium gallates with a low-dimensional chain structure [J]. Inorg. Chem., 2016, 55(2): 894-901. doi: 10.1021/acs.inorgchem.5b02401http://dx.doi.org/10.1021/acs.inorgchem.5b02401
0
Views
24
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution