With the spread of bacterial drug resistance, especially the emergence of “superbugs”, it's an urgent need to develop new antibacterial materials and technologies with high efficiency, low toxicity and no drug resistance. In this study,
thea viridis
derived carbon dots (T-CDs) were successfully prepared by solvothermal method. Under 660 nm laser irradiation, the prepared T-CDs could effectively produce reactive oxygen species (ROS).
In vitro
and
in vivo
experiments showed that T-CDs have excellent biocompatibility, and can produce ROS under laser irradiation to kill methicillin-resistant
Staphylococcus aureus
, thereby reducing wound inflammation caused by bacteria and accelerating wound healing. The prepared T-CDs can kill pathogenic bacteria through PDT and promote the healing of infected wounds, provide a new idea for the development of antibiotic replacement drugs, and have important value for exploring new clinical treatment schemes of drug-resistant bacteria infected wounds.
SUGDEN R, KELLY R, DAVIES S. Combatting antimicrobial resistance globally [J]. Nat. Microbiol., 2016, 1(10): 16187-1-2. doi: 10.1038/nmicrobiol.2016.187http://dx.doi.org/10.1038/nmicrobiol.2016.187
ANTIMICROBIAL RESISTANCE COLLABORATORS. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J]. Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0http://dx.doi.org/10.1016/S0140-6736(21)02724-0
OKANO A, ISLEY N A, BOGER D L. Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues [J]. Chem. Rev., 2017, 117(18): 11952-11993. doi: 10.1021/acs.chemrev.6b00820http://dx.doi.org/10.1021/acs.chemrev.6b00820
CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome [J]. Nat. Rev. Microbiol., 2017, 15(7): 422-434. doi: 10.1038/nrmicro.2017.28http://dx.doi.org/10.1038/nrmicro.2017.28
WAINWRIGHT M, MAISCH T, NONELL S, et al. Photoantimicrobials—are we afraid of the light?[J]. Lancet Infect. Dis., 2017, 17(2): E49-E55. doi: 10.1016/s1473-3099(16)30268-7http://dx.doi.org/10.1016/s1473-3099(16)30268-7
JIA Q Y, SONG Q, LI P, et al. Rejuvenated photodynamic therapy for bacterial infections [J]. Adv. Healthc. Mater., 2019, 8(14): 1900608-1-19. doi: 10.1002/adhm.201900608http://dx.doi.org/10.1002/adhm.201900608
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021, 42(8): 1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
LI P F, SUN L, XUE S S, et al. Recent advances of carbon dots as new antimicrobial agents [J]. SmartMat, 2022, 3(2): 226-248. doi: 10.1002/smm2.1131http://dx.doi.org/10.1002/smm2.1131
YANG J J, GE G, ZHANG X D, et al. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation [J]. Carbon, 2019, 146: 827-839. doi: 10.1016/j.carbon.2019.02.040http://dx.doi.org/10.1016/j.carbon.2019.02.040
YANG J J, ZHANG X D, MA Y H, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications [J]. ACS Appl. Mater. Interfaces, 2016, 8(47): 32170-32181. doi: 10.1021/acsami.6b10398http://dx.doi.org/10.1021/acsami.6b10398
WANG B Y, SONG H Q, QU X L, et al. Carbon dots as a new class of nanomedicines: opportunities and challenges [J]. Coordin. Chem. Rev., 2021, 442: 214010-1-18. doi: 10.1016/j.ccr.2021.214010http://dx.doi.org/10.1016/j.ccr.2021.214010
HU M Y, LIU K, GAO S Y, et al. Microwave preparation of common lophatherum herb carbon quantum dots and application in cell imaging [J]. Chin. J. Lumin., 2022, 43(12): 2001-2013. (in Chinese). doi: 10.37188/CJL.20220256http://dx.doi.org/10.37188/CJL.20220256
WU S M, JIANG Y W, HUA J J, et al. Effects of different full drying methods on the chlorophyll degradation in green tea as analyzed by UPLC-Q-Exactive Orbitrap-MS [J]. Food Sci., 2022, 43(8): 44-51. (in Chinese)
ZHANG Y X, JIA Q Y, NAN F C, et al. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type Ⅰ/Ⅱphotodynamic therapy [J]. Biomaterials, 2023, 293: 121953-1-13. doi: 10.1016/j.biomaterials.2022.121953http://dx.doi.org/10.1016/j.biomaterials.2022.121953
BU W H, XU X W, WANG Z L, et al. Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration [J]. ACS Appl. Mater. Interfaces, 2020, 12(45): 50287-50302. doi: 10.1021/acsami.0c15425http://dx.doi.org/10.1021/acsami.0c15425
YANG H Y, LIU Y L, GUO Z Y, et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission [J]. Nat. Commun., 2019, 10(1): 1789-1-11. doi: 10.1038/s41467-019-09830-6http://dx.doi.org/10.1038/s41467-019-09830-6
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J]. Adv. Mater., 2015, 27(10): 1663-1667. doi: 10.1002/adma.201405070http://dx.doi.org/10.1002/adma.201405070
WEN Y M, JIA Q Y, NAN F C, et al. Pheophytin derived near-infrared-light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy [J]. Chem. Asian J., 2019, 14(12): 2162-2168. doi: 10.1002/asia.201900416http://dx.doi.org/10.1002/asia.201900416
SUN J, DU K, DIAO J J, et al. GSH and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia [J]. Angew. Chem. Int. Ed., 2020, 59(29): 12122-12128. doi: 10.1002/anie.202003895http://dx.doi.org/10.1002/anie.202003895
NAN F C, YNAG Y, ZHAO X Z, et al. Orthotopic bladder tumor targeted carbon dots for fluorescence imaging-guided phototherapy [J]. Chin. J. Lumin., 2022, 43(4): 608-619. (in English). doi: 10.37188/CJL.20220017http://dx.doi.org/10.37188/CJL.20220017
ZHONG X Y, WANG X W, LI J X, et al. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine [J]. Coordin. Chem. Rev., 2021, 437: 213828-1-35. doi: 10.1016/j.ccr.2021.213828http://dx.doi.org/10.1016/j.ccr.2021.213828
ZHANG J H, JIA Q Y, YUE Z L, et al. An electroluminodynamic flexible device for highly efficient eradication of drug-resistant bacteria [J]. Adv. Mater., 2022, 34(17): 2200334-1-11. doi: 10.1002/adma.202200334http://dx.doi.org/10.1002/adma.202200334
Recent Advances of Red/Near Infrared Light Responsive Carbon Dots for Tumor Therapy
Research Progress on Synthesis, Regulation and Applications of Long-wavelength Emission Carbon Dots
Research Progress on Photothermal Property of Deep Red to Near-infrared Carbon Dots
Related Author
ZHANG Yunxiu
JIA Qingyan
GE Jiechao
Fu-chun NAN
Xiao-kuang XUE
Jie-chao GE
Peng-fei WANG
Fuchun Nan
Related Institution
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road
School of future technology, University of Chinese Academy of Sciences
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
School of Future Technology, University of Chinese Academy of Sciences