浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院, 平板显示技术国家地方联合工程实验室, 福建 福州 350108
2.中国福建光电信息科学与技术创新实验室(闽都创新实验室), 福建 福州 350108
Published:05 June 2023,
Received:19 January 2023,
Revised:19 February 2023,
扫 描 看 全 文
严银菓,蔡俊虎,周小健等.基于原子层沉积的量子点色彩转换膜封装[J].发光学报,2023,44(06):1059-1068.
YAN Yinguo,CAI Junhu,ZHOU Xiaojian,et al.Encapsulation of Quantum-dot Color Conversion Films Based on Atomic Layer Deposition[J].Chinese Journal of Luminescence,2023,44(06):1059-1068.
严银菓,蔡俊虎,周小健等.基于原子层沉积的量子点色彩转换膜封装[J].发光学报,2023,44(06):1059-1068. DOI: 10.37188/CJL.20230012.
YAN Yinguo,CAI Junhu,ZHOU Xiaojian,et al.Encapsulation of Quantum-dot Color Conversion Films Based on Atomic Layer Deposition[J].Chinese Journal of Luminescence,2023,44(06):1059-1068. DOI: 10.37188/CJL.20230012.
量子点色转换是实现新型显示器件全彩化和提升显示色域的一种有效策略,但量子点环境稳定性差限制了其应用和发展。本文基于具有自限制表面反应特性的原子层沉积工艺,探索了在量子点色彩转换膜上原位生长致密的氧化铝封装膜,该封装方法将具有高光透过率、高致密的材料与贴合紧密的工艺有效结合。仿真结果表明,氧化铝封装的量子点色彩转换膜的出光强度达到了未封装的94.9%。并且,实验结果也表明,氧化铝封装基板的光透过率是空白基板的96.4%,而且封装后的量子点色彩转换膜在高温高湿(85 ℃,85% RH)环境中工作240 h后,光转换效率仍然保持初始的60.8%,比未封装的光转换效率(11.43%)提升了63.9%。该封装方法实现了在量子点色彩转换膜出光强度不受影响的同时,有效提升量子点色彩转换膜的稳定性,为量子点色彩转换膜的稳定性提升提供了一条可行思路,同时扩展了原子层沉积工艺在光电显示领域的应用,具有重要的科学意义和应用前景。
Quantum dot color conversion (QDCC) is an effective strategy to realize the full color of new display devices and improve the display color gamut, but the poor environmental stability of QD limits its application and development. Based on the atomic layer deposition(ALD) process with self-limiting surface reaction characteristics, this paper explores the
in⁃situ
growth of dense alumina encapsulation film on a quantum-dot color conversion film (QDCCF). This encapsulation method effectively combines a high light transmittance and high dense material with a tightly bonded process. The simulation results show that the light intensity of the QDCCF encapsulated by alumina reaches 94.9% of that of the unencapsulated one. Furthermore, the experimental results also show that the light transmittance of the substrate with alumina encapsulation is 96.4% of the blank substrate. Moreover, after working for 240 h in a high temperature and high humidity (85 ℃, 85% RH) environment, the light conversion efficiency of the encapsulated QDCCF remains 60.8% of the initial, which is 63.9% higher than the unencapsulated (11.43%). The encapsulation method effectively improves the stability of QDCCF while the light intensity is not affected, which provides a feasible idea for improving the stability of QDCCF, and expands the application of ALD process in the field of photoelectric display, which has important scientific significance and application prospects.
氧化铝原子层沉积量子点色彩转换膜光透过率稳定性。
aluminaatomic layer depositionquantum dot color conversion filmlight transmittancestability
REN X X, ZHANG X, XIE H X, et al. Perovskite quantum dots for emerging displays: recent progress and perspectives [J]. Nanomaterials, 2022, 12(13): 2243-1-28. doi: 10.3390/nano12132243http://dx.doi.org/10.3390/nano12132243
MOON H, LEE C, LEE W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications [J]. Adv. Mater., 2019, 31(34): 1804294-1-14. doi: 10.1002/adma.201804294http://dx.doi.org/10.1002/adma.201804294
KIM J, SHIM H J, YANG J, et al. Ultrathin quantum dot display integrated with wearable electronics [J]. Adv. Mater., 2017, 29(38): 1700217-1-6. doi: 10.1002/adma.201700217http://dx.doi.org/10.1002/adma.201700217
YU M N, SAEED M H, ZHANG S F, et al. Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications [J]. Adv. Funct. Mater., 2022, 32(13): 2109472-1-23. doi: 10.1002/adfm.202109472http://dx.doi.org/10.1002/adfm.202109472
YANG J, CHOI M K, YANG U J, et al. Toward full-color electroluminescent quantum dot displays [J]. Nano Lett., 2021, 21(1): 26-33. doi: 10.1021/acs.nanolett.0c03939http://dx.doi.org/10.1021/acs.nanolett.0c03939
叶芸, 喻金辉, 林淑颜, 等. 量子点背光技术的研究进展 [J]. 中国光学, 2020, 13(1): 14-27. doi: 10.3788/co.20201301.0014http://dx.doi.org/10.3788/co.20201301.0014
YE Y, YU J H, LIN S Y, et al. Progress of quantum dot backlight technology [J]. Chin. Opt., 2020, 13(1): 14-27. (in Chinese). doi: 10.3788/co.20201301.0014http://dx.doi.org/10.3788/co.20201301.0014
WANG C H, CAI J H, YE Y Y, et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis [J]. Nanophotonics, 2022, 11(7): 1355-1366. doi: 10.1515/nanoph-2021-0768http://dx.doi.org/10.1515/nanoph-2021-0768
尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展 [J]. 发光学报, 2021, 42(4): 419-447. doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
YIN Y M, MENG H. Progress of quantum dots and perovskite as color conversion materials for full-color display [J]. Chin. J. Lumin., 2021, 42(4): 419-447. (in Chinese). doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
蔡俊虎, 王晨辉, 胡新培, 等. CdSe/CdS量子点聚合物复合材料的水致荧光可逆特性 [J]. 发光学报, 2022, 43(5): 714-724. doi: 10.37188/CJL.20210401http://dx.doi.org/10.37188/CJL.20210401
CAI J H, WANG C H, HU X P, et al. Water-driven photoluminescence reversibility in CdSe/CdS quantum dots polymer composite [J]. Chin. J. Lumin., 2022, 43(5): 714-724. (in Chinese). doi: 10.37188/CJL.20210401http://dx.doi.org/10.37188/CJL.20210401
SHIH Y C, SHI F G. Quantum dot based enhancement or elimination of color filters for liquid crystal display [J]. IEEE J. Sel. Top. Quant. Electron., 2017, 23(5): 1901304-1-4. doi: 10.1109/jstqe.2017.2748923http://dx.doi.org/10.1109/jstqe.2017.2748923
KIM H J, SHIN M H, LEE J Y, et al. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film [J]. Opt. Express, 2017, 25(10): 10724-10734. doi: 10.1364/oe.25.010724http://dx.doi.org/10.1364/oe.25.010724
HUANG B L, GUO T L, XU S, et al. Color converting film with quantum-dots for the liquid crystal displays based on inkjet printing [J]. IEEE Photonics J., 2019, 11(3): 7000609-1-9. doi: 10.1109/jphot.2019.2911308http://dx.doi.org/10.1109/jphot.2019.2911308
HAN H V, LIN H Y, LIN C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Opt. Express, 2015, 23(25): 32504-32515. doi: 10.1364/oe.23.032504http://dx.doi.org/10.1364/oe.23.032504
CHEN S W H, SHEN C C, WU T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer [J]. Photonics Res., 2019, 7(4): 416-422. doi: 10.1364/prj.7.000416http://dx.doi.org/10.1364/prj.7.000416
KIM H M, RYU M, CHA J H J, et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display [J]. J. Soc. Inf. Display, 2019, 27(6): 347-353. doi: 10.1002/jsid.782http://dx.doi.org/10.1002/jsid.782
卢子元, 庄永漳, 仉旭, 等. Micro-LED全彩显示中量子点膜层制备及光转换效率优化 [J]. 发光学报, 2022, 43(3): 421-429. doi: 10.37188/cjl.20210368http://dx.doi.org/10.37188/cjl.20210368
LU Z Y, CHONG W C, ZHANG X, et al. Synthesis and conversion efficiency optimization of quantum dots layer for full-color micro-LED display [J]. Chin. J. Lumin., 2022, 43(3): 421-429. (in Chinese). doi: 10.37188/cjl.20210368http://dx.doi.org/10.37188/cjl.20210368
JUN S, LEE J, JANG E. Highly luminescent and photostable quantum dot⁃silica monolith and its application to light-emitting diodes [J]. ACS Nano, 2013, 7(2): 1472-1477. doi: 10.1021/nn3052428http://dx.doi.org/10.1021/nn3052428
CAI Y T, WANG H R, LI Y, et al. Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability [J]. Chem. Mater., 2019, 31(3): 881-889. doi: 10.1021/acs.chemmater.8b04049http://dx.doi.org/10.1021/acs.chemmater.8b04049
LI Z C, YAO W, KONG L, et al. General method for the synthesis of ultrastable core/shell quantum dots by aluminum doping [J]. J. Am. Chem. Soc., 2015, 137(39): 12430-12433. doi: 10.1021/jacs.5b05462http://dx.doi.org/10.1021/jacs.5b05462
XIE H X, CHEN E G, YE Y, et al. Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability [J]. Appl. Phys. Lett., 2020, 117(17): 171101-1-7. doi: 10.1063/5.0026314http://dx.doi.org/10.1063/5.0026314
CHO J, JUNG Y K, LEE J K, et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability [J]. Langmuir, 2017, 33(15): 3711-3719. doi: 10.1021/acs.langmuir.6b04333http://dx.doi.org/10.1021/acs.langmuir.6b04333
GUERRERO-MARTÍNEZ A, PÉREZ-JUSTE J, LIZ-MARZÁN L M. Recent progress on silica coating of nanoparticles and related nanomaterials [J]. Adv. Mater., 2010, 22(11): 1182-1195. doi: 10.1002/adma.200901263http://dx.doi.org/10.1002/adma.200901263
XIE H X, CHEN E G, YE Y, et al. Highly stabilized gradient alloy quantum dots and silica hybrid nanospheres by core double shells for photoluminescence devices [J]. J. Phys. Chem. Lett., 2020, 11(4): 1428-1434. doi: 10.1021/acs.jpclett.9b03578http://dx.doi.org/10.1021/acs.jpclett.9b03578
秦丽丽, 冯煜东, 董茂进, 等. 量子点膜用高阻隔膜制备技术研究进展 [J]. 表面工程与再制造, 2021, 21(1): 23-28. doi: 10.3969/j.issn.1672-3732.2021.01.006http://dx.doi.org/10.3969/j.issn.1672-3732.2021.01.006
QIN L L, FENG Y D, DONG M J, et al. Research progress in preparation technology of high barrier membrane for quantum dot membrane [J]. Surf. Eng. Remanufacturing, 2021, 21(1): 23-28. (in Chinese). doi: 10.3969/j.issn.1672-3732.2021.01.006http://dx.doi.org/10.3969/j.issn.1672-3732.2021.01.006
CHEN Y, CAI J H, LIN J Y, et al. Quantum-dot array with a random rough interface encapsulated by atomic layer deposition [J]. Opt. Lett., 2022, 47(1): 166-169. doi: 10.1364/ol.446231http://dx.doi.org/10.1364/ol.446231
CAI J, LIN J Y, CHEN Y, et al. Stacked encapsulation structure for discretely distributed quantum dot array [J]. IEEE Photonics J., 2020, 12(2): 7000310-1-10. doi: 10.1109/jphot.2020.2977218http://dx.doi.org/10.1109/jphot.2020.2977218
CAO K, CAI J M, CHEN R. Inherently selective atomic layer deposition and applications [J]. Chem. Mater., 2020, 32(6): 2195-2207. doi: 10.1021/acs.chemmater.9b04647http://dx.doi.org/10.1021/acs.chemmater.9b04647
CAI J Y, HAN X X, WANG X, et al. Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics [J]. Matter, 2020, 2(3): 587-630. doi: 10.1016/j.matt.2019.12.026http://dx.doi.org/10.1016/j.matt.2019.12.026
GEORGE S M. Atomic layer deposition: an overview [J]. Chem. Rev., 2010, 110(1): 111-131. doi: 10.1021/cr900056bhttp://dx.doi.org/10.1021/cr900056b
CAI J H, WANG C H, HU X P, et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite [J]. Nano Res., 2022, 15(7): 6466-6476. doi: 10.1007/s12274-022-4202-0http://dx.doi.org/10.1007/s12274-022-4202-0
段珊珊, 施昌勇, 杨丽珍, 等. 原子层沉积法制备Al2O3薄膜研究近况和发展趋势 [J]. 真空, 2021, 58(6): 13-20. doi: 10.13385/j.cnki.vacuum.2021.06.03http://dx.doi.org/10.13385/j.cnki.vacuum.2021.06.03
DUAN S S, SHI C Y, YANG L Z, et al. The recent development and future of atomic layer deposition of alumina thin films [J]. Vacuum, 2021, 58(6): 13-20. (in Chinese). doi: 10.13385/j.cnki.vacuum.2021.06.03http://dx.doi.org/10.13385/j.cnki.vacuum.2021.06.03
KWON J H, JEONG E G, JEON Y, et al. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers [J]. ACS Appl. Mater. Interfaces, 2019, 11(3): 3251-3261. doi: 10.1021/acsami.8b11930http://dx.doi.org/10.1021/acsami.8b11930
石树正, 马立勇, 王占英. 原子层沉积制备非晶氧化铝薄膜及其光谱椭偏 [J]. 微纳电子技术, 2022, 59(11): 1218-1225.
SHI S Z, MA L Y, WANG Z Y. Preparation by atomic layer deposition and spectroscopic ellipsometry of amorphous aluminium oxide films [J]. Micronanoelectron. Technol., 2022, 59(11): 1218-1225. (in Chinese)
LLOPIS M V, RODRIGUEZ J C C, FERRERO M F J, et al. Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications [J]. Nanotechnology, 2011, 22(38): 385703-1-9. doi: 10.1088/0957-4484/22/38/385703http://dx.doi.org/10.1088/0957-4484/22/38/385703
0
Views
140
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution