浏览全部资源
扫码关注微信
南京邮电大学 通信与信息工程学院, 江苏 南京 210000
Published:05 June 2023,
Received:31 December 2022,
Revised:28 January 2023,
扫 描 看 全 文
李猛,孙阳,纪鑫等.圆盘尺寸对InP发光二极管的光谱调控[J].发光学报,2023,44(06):1006-1012.
LI Meng,SUN Yang,JI Xin,et al.Spectral Regulation of InP Light Emitting Diode by Disk Size[J].Chinese Journal of Luminescence,2023,44(06):1006-1012.
李猛,孙阳,纪鑫等.圆盘尺寸对InP发光二极管的光谱调控[J].发光学报,2023,44(06):1006-1012. DOI: 10.37188/CJL.20220434.
LI Meng,SUN Yang,JI Xin,et al.Spectral Regulation of InP Light Emitting Diode by Disk Size[J].Chinese Journal of Luminescence,2023,44(06):1006-1012. DOI: 10.37188/CJL.20220434.
片上可集成光源一直是光通信领域的研究热点。磷化铟(InP)材料是构建通信波段光源的理想材料。本文采用标准半导体工艺在InP衬底上制备了圆盘形微腔发光器件。通过制备四种尺寸的圆盘微腔发光二极管,研究了尺寸大小对于器件的性能,包括光强、半高宽、中心波长偏移等参数的影响。本研究对于电驱动光源的制备和实现通信波段的光通信具有重要意义。
The on-chip integrated light source has always been a research hotspot in the field of optical communication. Indium phosphide (InP) material is an ideal material for constructing communication band light source. In this paper, InP-based microcavity light emitting devices are fabricated on InP substrate by standard semiconductor technology. By preparing four kinds of disk microcavity light emitting diodes, the influence of size on the performance of the device, including light intensity, full width at half maximum, center wavelength shift,
etc
. is investigated. This research may be of great significance for the preparation of electric-driven light source and the realization of optical communication in communication band.
磷化铟发光二极管圆盘微腔光谱调控
indium phosphidelight emitting diodesdisk microcavityspectra modulation
杨俊, 赵有文, 董志远, 等. 深能级缺陷对半绝缘InP材料电学补偿的影响 [J]. 物理学报, 2007, 56(2): 1167-1171. doi: 10.3321/j.issn:1000-3290.2007.02.091http://dx.doi.org/10.3321/j.issn:1000-3290.2007.02.091
YANG J, ZHAO Y W, DONG Z Y, et al. Influence of deep level defects on electrical compensation in semi-insulating InP materials [J]. Acta Phys. Sin., 2007, 56(2): 1167-1171. (in Chinese). doi: 10.3321/j.issn:1000-3290.2007.02.091http://dx.doi.org/10.3321/j.issn:1000-3290.2007.02.091
马小涛, 郑婉华, 任刚, 等. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究 [J]. 物理学报, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977http://dx.doi.org/10.7498/aps.56.977
MA X T, ZHENG W H, REN G, et al. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal [J]. Acta Phys. Sinica, 2007, 56(2): 977-981. (in Chinese). doi: 10.7498/aps.56.977http://dx.doi.org/10.7498/aps.56.977
GUO B, XIAO Q L, WANG S H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications [J]. Laser Photonics Rev., 2019, 13(12): 1800327-1-46. doi: 10.1002/lpor.201800327http://dx.doi.org/10.1002/lpor.201800327
WANG K P, SZYDŁOWSKA B M, WANG G Z, et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared [J]. ACS Nano, 2016, 10(7): 6923-6932. doi: 10.1021/acsnano.6b02770http://dx.doi.org/10.1021/acsnano.6b02770
BIKORIMANA S, LAMA P, WALSER A, et al. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2 [J]. Opt. Express, 2016, 24(18): 20685-20695. doi: 10.1364/oe.24.020685http://dx.doi.org/10.1364/oe.24.020685
CHEN S Q, ZHAO C J, LI Y, et al. Broadband optical and microwave nonlinear response in topological insulator [J]. Opt. Mater. Express, 2014, 4(4): 587-596. doi: 10.1364/ome.4.000587http://dx.doi.org/10.1364/ome.4.000587
TAKIGUCHI M, ZHANG G Q, SASAKI S, et al. Direct modulation of a single InP/InAs nanowire light-emitting diode [J]. Appl. Phys. Lett., 2018, 112(25): 251106-1-5. doi: 10.1063/1.5037011http://dx.doi.org/10.1063/1.5037011
HA N, MANO T, WU Y N, et al. Wavelength extension beyond 1.5 µm in symmetric InAs quantum dots grown on InP(111)A using droplet epitaxy [J]. Appl. Phys. Express, 2016, 9(10): 101201-1-4. doi: 10.7567/apex.9.101201http://dx.doi.org/10.7567/apex.9.101201
ZHANG G Q, GNATEK D, TAKIGUCHI M, et al. Nanowire-based telecom-band light-emitting diodes with efficient light extraction [J]. Jpn. J. Appl. Phys., 2020, 59(10): 105003-1-8. doi: 10.35848/1347-4065/abb8b9http://dx.doi.org/10.35848/1347-4065/abb8b9
ZHANG G Q, TAKIGUCHI M, TATENO K, et al. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature [J]. Sci. Adv., 2019, 5(2): eaat8896-1-8. doi: 10.1126/sciadv.aat8896http://dx.doi.org/10.1126/sciadv.aat8896
WANG Y X, KASAI K, YOSHIDA M, et al. 60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz [J]. IEICE Electron. Express, 2014, 11(18): 20140641-1-7. doi: 10.1587/elex.11.20140641http://dx.doi.org/10.1587/elex.11.20140641
逄永秀, 龚连根, 府治平, 等. 1.55 μm InGaAsP/InP LED的研究 [J]. 发光学报, 1990, 11(2): 132-136.
PANG Y X, GONG L G, FU Z P, et al. Study on InGaAsP-InP LED emitting at 1.55 μm wavelength [J]. Chin. J. Lumin., 1990, 11(2): 132-136. (in Chinese)
WARD M B, FARROW T, SEE P, et al. Electrically driven telecommunication wavelength single-photon source [J]. Appl. Phys. Lett., 2007, 90(6): 063512-1-3. doi: 10.1063/1.2472172http://dx.doi.org/10.1063/1.2472172
NISHIWAKI H, KITANO K, NAKAJIMA H, et al. Organic dye 25 GB write-once disk with in-groove structure [J]. Jpn. J. Appl. Phys., 2006, 45(2S): 1452-1455. doi: 10.1143/jjap.45.1452http://dx.doi.org/10.1143/jjap.45.1452
CHEN Y X, SHEN G D, GUO W L, et al. AlGaInP-Si glue bonded high performance light emitting diodes [J]. Chin. Phys. B, 2011, 20(8): 087203-1-4. doi: 10.1088/1674-1056/20/8/087203http://dx.doi.org/10.1088/1674-1056/20/8/087203
MIKULICS M, WINDEN A, MARSO M, et al. Nano-light-emitting-diodes based on InGaN mesoscopic structures for energy saving optoelectronics [J]. Appl. Phys. Lett., 2016, 109(4): 041103-1-4. doi: 10.1063/1.4960007http://dx.doi.org/10.1063/1.4960007
MIYAZAWA T, OKUMURA S, HIROSE S, et al. First demonstration of electrically driven 1.55 µm single-photon generator [J]. Jpn. J. Appl. Phys., 2008, 47(4S): 2880-2883. doi: 10.1143/jjap.47.2880http://dx.doi.org/10.1143/jjap.47.2880
WENG H Z, YANG Y D, XIAO J L, et al. Spectral engineering for circular-side square microlasers [J]. Opt. Express, 2018, 26(8): 9409-9414. doi: 10.1364/oe.26.009409http://dx.doi.org/10.1364/oe.26.009409
JIANG X F, XIAO Y F, ZOU C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities [J]. Adv. Mater., 2012, 24(35): OP260-OP264. doi: 10.1002/adma.201290211http://dx.doi.org/10.1002/adma.201290211
ZOU C L, SUN F W, DONG C H, et al. High-Q and unidirectional emission whispering gallery modes: principles and design [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(5): 9000406-1-6. doi: 10.1109/jstqe.2012.2220896http://dx.doi.org/10.1109/jstqe.2012.2220896
DEPRETER B, MOERMAN I, BAETS R, et al. InP 1.3 μm microcavity LEDs with high quantum efficiency [J]. J. Cryst. Growth, 2000, 221(1-4): 674-678. doi: 10.1016/s0022-0248(00)00798-3http://dx.doi.org/10.1016/s0022-0248(00)00798-3
ZHOU W, BHATTACHARYA P, QASAIMEH O. InP-based cylindrical microcavity light-emitting diodes [J]. IEEE J. Quant. Electron., 2001, 37(1): 48-54. doi: 10.1109/3.892723http://dx.doi.org/10.1109/3.892723
DEPRETER B, MOERMAN I, BAETS R, et al. InP-based 1 300 nm microcavity LEDs with 9% quantum efficiency [J]. Electron. Lett., 2002, 36(15): 1303-1304.
MAMEDOV D S, PROKHOROV V V, YAKUBOVICH S D. Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1 550 nm [J]. Quant. Electron., 2003, 33(6): 511-514. doi: 10.1070/qe2003v033n06abeh002427http://dx.doi.org/10.1070/qe2003v033n06abeh002427
XIAO Z X, HUANG Y Z, YANG Y D, et al. Single-mode unidirectional-emission circular-side hexagonal resonator microlasers [J]. Opt. Lett., 2017, 42(7): 1309-1312. doi: 10.1364/ol.42.001309http://dx.doi.org/10.1364/ol.42.001309
ZOU L X, HUANG Y Z, LIU B W, et al. Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers [J]. Opt. Express, 2015, 23(3): 2879-2888. doi: 10.1364/oe.23.002879http://dx.doi.org/10.1364/oe.23.002879
VAN CAMPENHOUT J, ROJO-ROMEO P, REGRENY P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit [J]. Opt. Express, 2007, 15(11): 6744-6749. doi: 10.1364/oe.15.006744http://dx.doi.org/10.1364/oe.15.006744
MUNSCH M, CLAUDON J, MALIK N S, et al. Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes [J]. Appl. Phys. Lett., 2012, 100(3): 031111-1-4. doi: 10.1063/1.3678031http://dx.doi.org/10.1063/1.3678031
YANG Y D, XIAO J L, LIU B W, et al. Mode characteristics and vertical radiation loss for AlGaInAs/InP microcylinder lasers [J]. J. Opt. Soc. Am. B, 2015, 32(3): 439-444. doi: 10.1364/josab.32.000439http://dx.doi.org/10.1364/josab.32.000439
唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感 [J]. 物理, 2019, 48(3): 137-147.
TANG S J, LI B B, XIAO Y F. Optical sensing with whispering-gallery microcavities [J]. Physics, 2019, 48(3): 137-147. (in Chinese)
CHOI I, LEE K, LEE C R, et al. Application of hexagonal boron nitride to a heat-transfer medium of an InGaN/GaN quantum-well green LED [J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18876-18884. doi: 10.1021/acsami.9b05320http://dx.doi.org/10.1021/acsami.9b05320
WANG J, FENG M X, ZHOU R, et al. Thermal characterization of electrically injected GaN-based microdisk lasers on Si [J]. Appl. Phys. Express, 2020, 13(7): 074002-1-5. doi: 10.35848/1882-0786/ab95f0http://dx.doi.org/10.35848/1882-0786/ab95f0
0
Views
140
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution