浏览全部资源
扫码关注微信
中南大学 材料科学与工程学院, 湖南 长沙 410083
Published:05 June 2023,
Received:20 December 2022,
Revised:03 January 2023,
扫 描 看 全 文
敖宇辰,王谨,蔡格梅.无机应力发光材料的发光特性、发光机理及应用研究进展[J].发光学报,2023,44(06):942-963.
AO Yuchen,WANG Jin,CAI Gemei.Advances in Luminescence Characteristics, Luminescence Mechanisms and Applications of Inorganic Mechanoluminescent Materials[J].Chinese Journal of Luminescence,2023,44(06):942-963.
敖宇辰,王谨,蔡格梅.无机应力发光材料的发光特性、发光机理及应用研究进展[J].发光学报,2023,44(06):942-963. DOI: 10.37188/CJL.20220421.
AO Yuchen,WANG Jin,CAI Gemei.Advances in Luminescence Characteristics, Luminescence Mechanisms and Applications of Inorganic Mechanoluminescent Materials[J].Chinese Journal of Luminescence,2023,44(06):942-963. DOI: 10.37188/CJL.20220421.
能在机械刺激下发光的材料可称为应力发光材料,应力发光属于一种力学⁃光子转换过程。在17世纪初首次观测到应力发光现象,但直至20世纪末,SrAl
2
O
4
∶Eu
2+
和ZnS∶Mn
2+
应力发光材料的出现以及其在应力传感领域巨大的应用前景才重新引起了研究者对应力发光材料的广泛关注。近二十多年来,随着人们对应力发光的深入认识以及对应力发光性能提升方法的逐步掌控,应力发光材料得到了快速发展,并在防伪加密、应力传感、疾病监测、照明显示、应力记录等领域展示出巨大的应用潜力。本文围绕应力发光材料的发展与研究现状,对应力发光材料的分类、发光特性、发光机理和应用领域进行了梳理和总结,提出了当下面临的瓶颈问题以及未来可能的研究方向,旨在为新型实用应力发光材料的开发提供有益的启示。
Materials that can emit light under mechanical stimulation can be called mechanoluminescent (ML) materials, and mechanoluminescence (ML) belongs to a mechanical-photonic conversion process. ML phenomenon was first observed in the early 17th century. However, it was not until the end of the 20th century that the emergence of SrAl
2
O
4
∶Eu
2+
and ZnS∶Mn
2+
ML materials and their excellent application prospects in the field of stress sensing attracted the attention of researchers again. In the past two decades, with the in-depth understanding of ML and the gradual mastery of ML performance enhancement methods, ML materials have been developed rapidly and have shown great potential for applications in the fields of anti-counterfeit encryption, stress sensing, disease monitoring, illumination display, and stress recording,
etc
. This paper focuses on the development and research status, and summarizes the classification, luminescence characteristics, luminescence mechanisms and application fields of ML materials. The current bottleneck problems and possible future research directions are proposed, aiming to provide useful inspiration for the development of new practical ML materials.
应力发光应力传感发光机理
mechanoluminescencestress sensingluminescence mechanism
ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J]. Prog. Mater. Sci., 2019, 103: 678-742. doi: 10.1016/j.pmatsci.2019.02.001http://dx.doi.org/10.1016/j.pmatsci.2019.02.001
BACON F. The Advancement of Learning [M]. New York: Da Capo Press, 1605. doi: 10.1093/oseo/instance.00007154http://dx.doi.org/10.1093/oseo/instance.00007154
BUTLER C T. Room-temperature deformation luminescence in alkali halides [J]. Phys. Rev., 1966, 141(2): 750-757. doi: 10.1103/physrev.141.750http://dx.doi.org/10.1103/physrev.141.750
ALZETTA G, CHUDÁČEK I, SCARMOZZINO R. Excitation of triboluminescence by deformation of single crystals [J]. Phys. Status Solidi A, 1970, 1(4): 775-785. doi: 10.1002/pssa.19700010417http://dx.doi.org/10.1002/pssa.19700010417
XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence [J]. Appl. Phys. Lett., 1999, 74(17): 2414-2416. doi: 10.1063/1.123865http://dx.doi.org/10.1063/1.123865
XU C N, WATANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission [J]. Appl. Phys. Lett., 1999, 74(9): 1236-1238. doi: 10.1063/1.123510http://dx.doi.org/10.1063/1.123510
QIU G J, FANG H, WANG X S, et al. Largely enhanced mechanoluminescence properties in Pr3+/Gd3+ co-doped LiNbO3 phosphors [J]. Ceram. Int., 2018, 44(13): 15411-15417. doi: 10.1016/j.ceramint.2018.05.193http://dx.doi.org/10.1016/j.ceramint.2018.05.193
LI J, XU C N, TU D, et al. Tailoring bandgap and trap distribution via Si or Ge substitution for Sn to improve mechanoluminescence in Sr3Sn2O7∶Sm3+ layered perovskite oxide [J]. Acta Mater., 2018, 145: 462-469. doi: 10.1016/j.actamat.2017.12.003http://dx.doi.org/10.1016/j.actamat.2017.12.003
KAMIMURA S, YAMADA H, XU C N. Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1∶Sm3+(n=1, 2, ∞) with perovskite-related structures [J]. Appl. Phys. Lett., 2012, 101(9): 091113. doi: 10.1063/1.4749807http://dx.doi.org/10.1063/1.4749807
XIONG P X, PENG M Y, CAO J K, et al. Near infrared mechanoluminescence from Sr3Sn2O7∶Nd3+ for in situ biomechanical sensor and dynamic pressure mapping [J]. J. Am. Ceram. Soc., 2019, 102(10): 5899-5909. doi: 10.1111/jace.16444http://dx.doi.org/10.1111/jace.16444
WEI X Y, WANG X D, KUANG S Y, et al. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing [J]. Adv. Mater., 2016, 28(31): 6656-6664. doi: 10.1002/adma.201600604http://dx.doi.org/10.1002/adma.201600604
ZHUANG Y X, LI X Y, LIN F Y, et al. Visualizing dynamic mechanical actions with high sensitivity and high resolution by near-distance mechanoluminescence imaging [J]. Adv. Mater., 2022, 34(36): 2202864-1-11. doi: 10.1002/adma.202202864http://dx.doi.org/10.1002/adma.202202864
BAI Y Q, WANG F, ZHANG L Q, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds [J]. Nano Energy, 2022, 96: 107075. doi: 10.1016/j.nanoen.2022.107075http://dx.doi.org/10.1016/j.nanoen.2022.107075
TU D, XU C N, KAMIMURA S, et al. Ferroelectric Sr3Sn2O7∶Nd3+: a new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence [J]. Adv. Mater., 2020, 32(25): 1908083-1-9. doi: 10.1002/adma.201908083http://dx.doi.org/10.1002/adma.201908083
PENG D F, JIANG Y, HUANG B L, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset [J]. Adv. Mater., 2020, 32(16): 1907747-1-7. doi: 10.1002/adma.201907747http://dx.doi.org/10.1002/adma.201907747
TU D, XU C N, YOSHIDA A, et al. LiNbO3∶Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence [J]. Adv. Mater., 2017, 29(22): 1606914-1-4. doi: 10.1002/adma.201606914http://dx.doi.org/10.1002/adma.201606914
CHEN C J, ZHUANG Y X, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO [J]. Nano Energy, 2020, 68: 104329-1-9. doi: 10.1016/j.nanoen.2019.104329http://dx.doi.org/10.1016/j.nanoen.2019.104329
DU Y Y, JIANG Y, SUN T Y, et al. Mechanically excited multicolor luminescence in lanthanide ions [J]. Adv. Mater., 2019, 31(7): 1807062-1-8. doi: 10.1002/adma.201807062http://dx.doi.org/10.1002/adma.201807062
FUJIO Y, XU C N, SAKATA Y, et al. Invisible crack visualization and depth analysis by mechanoluminescence film [J]. J. Alloys Compd., 2020, 832: 154900-1-9. doi: 10.1016/j.jallcom.2020.154900http://dx.doi.org/10.1016/j.jallcom.2020.154900
SONG H, TIMILSINA S, JUNG J, et al. Improving the sensitivity of the mechanoluminescence composite through functionalization for structural health monitoring [J]. ACS Appl. Mater. Interfaces, 2022, 14(26): 30205-30215. doi: 10.1021/acsami.2c07286http://dx.doi.org/10.1021/acsami.2c07286
MA Z D, ZHOU J Y, ZHANG J C, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence [J]. Mater. Horiz., 2019, 6(10): 2003-2008. doi: 10.1039/c9mh01028ahttp://dx.doi.org/10.1039/c9mh01028a
YANG Y L, LI T, GUO F, et al. Multiple color emission of mechanoluminescence and photoluminescence from SrZnSO∶Bi3+ for multimode anticounterfeiting [J]. Inorg. Chem., 2022, 61(10): 4302-4311. doi: 10.1021/acs.inorgchem.1c03167http://dx.doi.org/10.1021/acs.inorgchem.1c03167
YANG Y L, YANG X C, YUAN J Y, et al. Time-resolved bright red to cyan color tunable mechanoluminescence from CaZnOS∶Bi3+,Mn2+ for anti-counterfeiting device and stress sensor [J]. Adv. Opt. Mater., 2021, 9(16): 2100668-1-12. doi: 10.1002/adom.202100668http://dx.doi.org/10.1002/adom.202100668
YANG X, ZHANG X, GUAN Q B, et al. Biomimetic multifunctional E-skins integrated with mechanoluminescence and chemical sensing abilities [J]. J. Mater. Chem. C, 2021, 9(8): 2815-2822. doi: 10.1039/d0tc05499bhttp://dx.doi.org/10.1039/d0tc05499b
PARK H J, KIM S, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system [J]. ACS Appl. Mater. Interfaces, 2019, 11(5): 5200-5207. doi: 10.1021/acsami.8b16023http://dx.doi.org/10.1021/acsami.8b16023
LIU X Y, XIONG P X, LI L J, et al. Monitoring cardiovascular disease severity using near-infrared mechanoluminescent materials as a built-in indicator [J]. Mater. Horiz., 2022, 9(6): 1658-1669. doi: 10.1039/d2mh00320ahttp://dx.doi.org/10.1039/d2mh00320a
HAN Y, BAI Y Q, BIAN J L, et al. Polydimethylsiloxane-based mechanoluminescent occlusal splint with the visualization of occlusal force [J]. ACS Appl. Polym. Mater., 2021, 3(10): 5180-5187. doi: 10.1021/acsapm.1c00917http://dx.doi.org/10.1021/acsapm.1c00917
JEONG S M, SONG S, JOO K I, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer [J]. Energy Environ. Sci., 2014, 7(10): 3338-3346. doi: 10.1039/c4ee01776ehttp://dx.doi.org/10.1039/c4ee01776e
BAI Y Q, GUO X P, TIAN B R, et al. Self-charging persistent mechanoluminescence with mechanics storage and visualization activities [J]. Adv. Sci., 2022, 9(28): 2203249-1-9. doi: 10.1002/advs.202203249http://dx.doi.org/10.1002/advs.202203249
HU R, ZHANG Y, ZHAO Y, et al. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display [J]. Mater. Chem. Front., 2021, 5(18): 6891-6903. doi: 10.1039/d1qm00723hhttp://dx.doi.org/10.1039/d1qm00723h
ZHUANG Y X, TU D, CHEN C J, et al. Force-induced charge carrier storage: a new route for stress recording [J]. Light Sci. Appl., 2020, 9: 182-1-9. doi: 10.1038/s41377-020-00422-4http://dx.doi.org/10.1038/s41377-020-00422-4
CAI Y Y, LIU S B, ZHAO L, et al. Delayed stress memory by CaAl2O4∶Eu2+ mechanoluminescent phosphor with defect engineering regulation [J]. J. Adv. Ceram., 2022, 11(8): 1319-1329. doi: 10.1007/s40145-022-0614-2http://dx.doi.org/10.1007/s40145-022-0614-2
潘鑫, 庄逸熙, 梅乐夫, 等. 力致发光材料机制: 回顾、进展及挑战 [J]. 硅酸盐学报, 2022, 50(12): 3147-3164.
PAN X, ZHUANG Y X, MEI L F, et al. Mechanism of mechanoluminescencent materials: review, progress and challenges [J]. J. Chin. Ceram. Soc., 2022, 50(12): 3147-3164. (in Chinese)
HUANG Z F, CHEN B, REN B Y, et al. Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies [J]. Adv. Sci., 2023, 10(3): 2204925-1-44. doi: 10.1002/advs.202204925http://dx.doi.org/10.1002/advs.202204925
XU C N. Coatings [M]. SCHWARTZ M. Encyclopedia of Smart Materials. New York: Wiley, 2002. doi: 10.1002/0471216275.esm015http://dx.doi.org/10.1002/0471216275.esm015
CHANDRA B P. Mechanoluminescence [M]. VIJ D R. Luminescence of Solids. New York: Springer, 1988.
REYNOLDS G T. Piezoluminescence from a ferroelectric polymer and quartz [J]. J. Lumin., 1997, 75(4): 295-299. doi: 10.1016/s0022-2313(97)00134-8http://dx.doi.org/10.1016/s0022-2313(97)00134-8
WALTON A J. Triboluminescence [J]. Adv. Phys., 1977, 26(6): 887-948. doi: 10.1080/00018737700101483http://dx.doi.org/10.1080/00018737700101483
JHA P, CHANDRA B P. Survey of the literature on mechanoluminescence from 1605 to 2013 [J]. Luminescence, 2014, 29(8): 977-993. doi: 10.1002/bio.2647http://dx.doi.org/10.1002/bio.2647
CHANDRA B P, RATHORE A S. Classification of mechanoluminescence [J]. Cryst. Res. Technol., 1995, 30(7): 885-896. doi: 10.1002/crat.2170300702http://dx.doi.org/10.1002/crat.2170300702
CHANDRA B P, BAGRI A K, CHANDRA V K. Mechanoluminescence response to the plastic flow of coloured alkali halide crystals [J]. J. Lumin., 2010, 130(2): 309-314. doi: 10.1016/j.jlumin.2009.09.008http://dx.doi.org/10.1016/j.jlumin.2009.09.008
GRABEC I. Analogy between triboluminescence of rubber and acoustic emission in metals [J]. Non⁃Destr. Test., 1975, 8(5): 258-260. doi: 10.1016/0029-1021(75)90046-8http://dx.doi.org/10.1016/0029-1021(75)90046-8
GRABEC I. Triboluminiscence of rubber [J]. J. Polym. Sci. Polym. Lett. Ed., 1974, 12(10): 573-576. doi: 10.1002/pol.1974.130121007http://dx.doi.org/10.1002/pol.1974.130121007
ZHUANG Y X, XIE R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review [J]. Adv. Mater., 2021, 33(50): 2005925-1-33. doi: 10.1002/adma.202005925http://dx.doi.org/10.1002/adma.202005925
ZHANG H W, YAMADA H, TERASAKI N, et al. Ultraviolet mechanoluminescence from SrAl2O4∶Ce and SrAl2O4∶Ce, Ho [J]. Appl. Phys. Lett., 2007, 91(8): 081905-1-3. doi: 10.1063/1.2772768http://dx.doi.org/10.1063/1.2772768
LI X, HU R, WANG X S, et al. Intense mechanoluminescence and photostimulated luminescence with less afterglow in Pr3+/Gd3+ co-doped LiTaO3 phosphors [J]. J. Lumin., 2021, 238: 118222-1-7. doi: 10.1016/j.jlumin.2021.118222http://dx.doi.org/10.1016/j.jlumin.2021.118222
SU M, LI P H, ZHENG S H, et al. Largely enhanced elastico-mechanoluminescence of CaZnOS∶Mn2+ by co-doping with Nd3+ ions [J]. J. Lumin., 2020, 217: 116777-1-8. doi: 10.1016/j.jlumin.2019.116777http://dx.doi.org/10.1016/j.jlumin.2019.116777
LI L J, WONDRACZEK L, PENG M Y, et al. Force-induced 1 540 nm luminescence: role of piezotronic effect in energy transfer process for mechanoluminescence [J]. Nano Energy, 2020, 69: 104413-1-9. doi: 10.1016/j.nanoen.2019.104413http://dx.doi.org/10.1016/j.nanoen.2019.104413
JIA J N, GAO X W, ZOU G Z. Alkaline-earth-metal-ions blending enhanced self-activated and Bi3+-activated mechanoluminescence from Ca1-xBaxZnOS [J]. Adv. Funct. Mater., 2022, 32(46): 2207881. doi: 10.1002/adfm.202207881http://dx.doi.org/10.1002/adfm.202207881
KAMIMURA S, YAMADA H, XU C N. Development of new elasticoluminescent material SrMg2(PO4)2∶Eu [J]. J. Lumin., 2012, 132(2): 526-530. doi: 10.1016/j.jlumin.2011.09.033http://dx.doi.org/10.1016/j.jlumin.2011.09.033
ZHANG H W, YAMADA H, TERASAKI N, et al. Blue light emission from stress-activated CaYAl3O7∶Eu [J]. J. Electrochem. Soc., 2008, 155(5): J128. doi: 10.1149/1.2890856http://dx.doi.org/10.1149/1.2890856
TU D, XU C N, FUJIO Y, et al. Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS∶Cu [J]. Light Sci. Appl., 2015, 4(11): e356-1-7. doi: 10.1038/lsa.2015.129http://dx.doi.org/10.1038/lsa.2015.129
TERASAWA Y, XU C N, YAMADA H, et al. Near infra-red mechanoluminescence from strontium aluminate doped with rare-earth ions [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2011, 18: 212013-1-4. doi: 10.1088/1757-899x/18/21/212013http://dx.doi.org/10.1088/1757-899x/18/21/212013
XIONG P X, PENG M Y. Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3∶Nd3+ for stress sensors [J]. J. Mater. Chem. C, 2019, 7(21): 6301-6307. doi: 10.1039/c9tc00242ahttp://dx.doi.org/10.1039/c9tc00242a
XIONG P X, PENG M Y, QIN K X, et al. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging [J]. Adv. Opt. Mater., 2019, 7(24): 1901107-1-11. doi: 10.1002/adom.201901107http://dx.doi.org/10.1002/adom.201901107
QIU G J, YE H H, WANG X S, et al. Intense piezoluminescence in LiTaO3 phosphors doped with Pr3+ ions [J]. Ceram. Int., 2019, 45(7): 8553-8560. doi: 10.1016/j.ceramint.2019.01.173http://dx.doi.org/10.1016/j.ceramint.2019.01.173
LI J A, ZHOU J H, MAO Z, et al. Transient and persistent room-temperature mechanoluminescence from a white-light-emitting AIEgen with tricolor emission switching triggered by light [J]. Angew. Chem., 2018, 130(22): 6559-6563. doi: 10.1002/ange.201800762http://dx.doi.org/10.1002/ange.201800762
SHARMA R, BISEN D P, DHOBLE S J, et al. Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals [J]. J. Lumin., 2011, 131(10): 2089-2092. doi: 10.1016/j.jlumin.2011.05.020http://dx.doi.org/10.1016/j.jlumin.2011.05.020
TIAN B R, WANG Z F, SMITH A T, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing [J]. Nano Energy, 2021, 83: 105860. doi: 10.1016/j.nanoen.2021.105860http://dx.doi.org/10.1016/j.nanoen.2021.105860
ZHANG N, TIAN B R, WANG Z F, et al. Intense mechanoluminescence in undoped LiGa5O8 with persistent and recoverable behaviors [J]. Adv. Opt. Mater., 2021, 9(13): 2100137-1-8. doi: 10.1002/adom.202100137http://dx.doi.org/10.1002/adom.202100137
LI L J, WONDRACZEK L, LI L H, et al. CaZnOS∶Nd3+ emits tissue-penetrating near-infrared light upon force loading [J]. ACS Appl. Mater. Interfaces, 2018, 10(17): 14509-14516. doi: 10.1021/acsami.8b02530http://dx.doi.org/10.1021/acsami.8b02530
ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping [J]. Chem. Mater., 2016, 28(11): 4052-4057. doi: 10.1021/acs.chemmater.6b01550http://dx.doi.org/10.1021/acs.chemmater.6b01550
LIANG A H, HU R, LI G R, et al. Intense mechanoluminescence, thermoluminescence and photoluminescence in Pr3+ doped K0.02Na0.98NbO3 ferroelectric phosphor [J]. J. Lumin., 2022, 247: 118866-1-5. doi: 10.1016/j.jlumin.2022.118866http://dx.doi.org/10.1016/j.jlumin.2022.118866
ZHANG J C, PAN C, ZHU Y F, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting [J]. Adv. Mater., 2018, 30(49): 1804644-1-9. doi: 10.1002/adma.201804644http://dx.doi.org/10.1002/adma.201804644
YANG X X, LIU R, XU X H, et al. Effective repeatable mechanoluminescence in heterostructured Li1-xNaxNbO3∶Pr3+ [J]. Small, 2021, 17(46): 2103441. doi: 10.1002/smll.202103441http://dx.doi.org/10.1002/smll.202103441
WANG X D, ZHANG H L, YU R M, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Adv. Mater., 2015, 27(14): 2324-2331. doi: 10.1002/adma.201405826http://dx.doi.org/10.1002/adma.201405826
XIONG P X, HUANG B L, PENG D F, et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8 [J]. Adv. Funct. Mater., 2021, 31(19): 2010685-1-11. doi: 10.1002/adfm.202010685http://dx.doi.org/10.1002/adfm.202010685
WANG W X, WANG Z B, ZHANG J C, et al. Contact electrification induced mechanoluminescence [J]. Nano Energy, 2022, 94: 106920. doi: 10.1016/j.nanoen.2022.106920http://dx.doi.org/10.1016/j.nanoen.2022.106920
ZHOU J Y, GU Y, LU J Y, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer [J]. Chem. Eng. J., 2020, 390: 124473-1-7. doi: 10.1016/j.cej.2020.124473http://dx.doi.org/10.1016/j.cej.2020.124473
GUO X P, BIAN J L, BAI Y Q, et al. Trap-independent mechanoluminescence in ZnB2O4∶Mn2+/PDMS composite elastomer with self-recovery activity [J]. Chem. Phys. Lett., 2022, 787: 139235-1-6. doi: 10.1016/j.cplett.2021.139235http://dx.doi.org/10.1016/j.cplett.2021.139235
NING J J, ZHENG Y T, REN Y T, et al. MgF2∶Mn2+: novel material with mechanically-induced luminescence [J]. Sci. Bull., 2022, 67(7): 707-715. doi: 10.1016/j.scib.2021.12.005http://dx.doi.org/10.1016/j.scib.2021.12.005
CHANDRA V K, CHANDRA B P, JHA P. Self-recovery of mechanoluminescence in ZnS∶Cu and ZnS∶Mn phosphors by trapping of drifting charge carriers [J]. Appl. Phys. Lett., 2013, 103(16): 161113-1-5. doi: 10.1063/1.4825360http://dx.doi.org/10.1063/1.4825360
CHANDRA B P, CHANDRA V K, JHA P. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and Ⅱ⁃Ⅵ semiconductor phosphors [J]. Phys. B Condens. Matter, 2015, 463: 62-67. doi: 10.1016/j.physb.2015.01.030http://dx.doi.org/10.1016/j.physb.2015.01.030
LIU Y, XU C N. Electroluminescent ceramics excited by low electrical field [J]. Appl. Phys. Lett., 2004, 84(24): 5016-5018. doi: 10.1063/1.1763223http://dx.doi.org/10.1063/1.1763223
ZHANG J C, WANG X S, YAO X, et al. Strong elastico-mechanoluminescence in diphase (Ba,Ca)TiO3∶Pr3+ with self-assembled sandwich architectures [J]. J. Electrochem. Soc., 2010, 157(12): G269. doi: 10.1149/1.3496667http://dx.doi.org/10.1149/1.3496667
ZHANG J C, WANG X S, YAO X, et al. Studies on AC electroluminescence device made of BaTiO3-CaTiO3∶Pr3+ diphase ceramics [J]. Appl. Phys. Express, 2010, 3(2): 022601-1-3. doi: 10.1143/apex.3.022601http://dx.doi.org/10.1143/apex.3.022601
ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging [J]. Acta Mater., 2018, 152: 148-154. doi: 10.1016/j.actamat.2018.04.011http://dx.doi.org/10.1016/j.actamat.2018.04.011
CHANDRA B P, XU C N, YAMADA H, et al. Luminescence induced by elastic deformation of ZnS∶Mn nanoparticles [J]. J. Lumin., 2010, 130(3): 442-450. doi: 10.1016/j.jlumin.2009.10.010http://dx.doi.org/10.1016/j.jlumin.2009.10.010
ZHENG Z Z, BAI Y X, REN Y J, et al. Intrinsic and extrinsic defects build a novel mechanoluminescent phosphor Na2MgGeO4∶Mn2+ [J]. J. Mater. Chem. C, 2021, 9(10): 3513-3521. doi: 10.1039/d0tc05582dhttp://dx.doi.org/10.1039/d0tc05582d
PAN C, ZHANG J C, ZHANG M, et al. Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide [J]. Appl. Phys. Lett., 2017, 110(23): 233904-1-5. doi: 10.1063/1.4985012http://dx.doi.org/10.1063/1.4985012
MENG W, CAI P B, FU X Y, et al. Sensitive mechanoluminescence from Eu2+, Tm3+ co-doped Sr3Al2O5Cl2 phosphors [J]. J. Lumin., 2022, 248: 118983-1-5. doi: 10.1016/j.jlumin.2022.118983http://dx.doi.org/10.1016/j.jlumin.2022.118983
WANG W X, SUN Z Y, HE X Y, et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4∶Bi3+, Eu3+ phosphor [J]. J. Mater. Chem. C, 2017, 5(17): 4310-4318. doi: 10.1039/c6tc05598bhttp://dx.doi.org/10.1039/c6tc05598b
VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds: a review [J]. Materials, 2013, 6(7): 2789-2818. doi: 10.3390/ma6072789http://dx.doi.org/10.3390/ma6072789
VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds: a review [J]. Materials, 2010, 3(4): 2536-2566. doi: 10.3390/ma3042536http://dx.doi.org/10.3390/ma3042536
ZHANG J C, XU C N, KAMIMURA S, et al. An intense elastico-mechanoluminescence material CaZnOS∶Mn2+ for sensing and imaging multiple mechanical stresses [J]. Opt. Express, 2013, 21(11): 12976-12986. doi: 10.1364/oe.21.012976http://dx.doi.org/10.1364/oe.21.012976
JIA Y, YEI M, JIA W Y. Stress-induced mechanoluminescence in SrAl2O4∶Eu2+, Dy3+ [J]. Opt. Mater., 2006, 28(8-9): 974-979. doi: 10.1016/j.optmat.2005.05.014http://dx.doi.org/10.1016/j.optmat.2005.05.014
QIN S Y, BIAN J L, HAN Y, et al. Intense and efficient green mechanoluminescence in CaLaAl3O7 through Tb3+ doping [J]. Mater. Res. Bull., 2022, 145: 111535-1-7. doi: 10.1016/j.materresbull.2021.111535http://dx.doi.org/10.1016/j.materresbull.2021.111535
WANG Y J, FENG P, DING S S, et al. A promising route for developing yellow long persistent luminescence and mechanoluminescence in CaGa2O4∶Pr3+, Li+ [J]. Inorg. Chem. Front., 2021, 8(15): 3748-3759. doi: 10.1039/d1qi00326ghttp://dx.doi.org/10.1039/d1qi00326g
VASANTHI B, GOPAKUMAR N, ANJANA P S. Structural, optical and luminescence properties of BaLaGa3O7∶xEu3+ ceramic phosphors [J]. J. Lumin., 2022, 241: 118486-1-5. doi: 10.1016/j.jlumin.2021.118486http://dx.doi.org/10.1016/j.jlumin.2021.118486
DING S S, CHEN P H, GUO H J, et al. Crystal structure and optical performance analysis of a new type of persistent luminescence material with multi-functional application prospects [J]. J. Energy Chem., 2022, 69: 150-160. doi: 10.1016/j.jechem.2021.12.047http://dx.doi.org/10.1016/j.jechem.2021.12.047
ZHANG J C, GAO N, LI L, et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution [J]. Adv. Funct. Mater., 2021, 31(19): 2100221-1-9. doi: 10.1002/adfm.202100221http://dx.doi.org/10.1002/adfm.202100221
LYU T S, DORENBOS P, XIONG P X, et al. LiTaO3∶Bi3+,Tb3+,Ga3+,Ge4+: a smart perovskite with high charge carrier storage capacity for X-ray imaging, stress sensing, and non-real-time recording [J]. Adv. Funct. Mater., 2022, 32(39): 2206024-1-14. doi: 10.1002/adfm.202206024http://dx.doi.org/10.1002/adfm.202206024
PAN C, ZHANG J C, ZHANG M, et al. Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7(M=Sr,Ca) isomorphic perovskites [J]. Opt. Mater. Express, 2018, 8(6): 1425-1434. doi: 10.1364/ome.8.001425http://dx.doi.org/10.1364/ome.8.001425
ZHANG H W, YAMADA H, TERASAKI N, et al. Green mechanoluminescence of Ca2MgSi2O7∶Eu and Ca2MgSi2O7∶Eu, Dy [J]. J. Electrochem. Soc., 2008, 155(2): J55. doi: 10.1149/1.2816215http://dx.doi.org/10.1149/1.2816215
FANG H, QIU G J, LI J, et al. Sr2+ substitution for Ca2+ and Eu2+, Dy3+ co-doping enhance mechanoluminescence of CaAl2Si2O8 phosphors [J]. J. Alloys Compd., 2018, 763: 267-272. doi: 10.1016/j.jallcom.2018.05.294http://dx.doi.org/10.1016/j.jallcom.2018.05.294
JIANG T, ZHU Y F, ZHANG J C, et al. Multistimuli-responsive display materials to encrypt differentiated information in bright and dark fields [J]. Adv. Funct. Mater., 2019, 29(51): 1906068-1-10. doi: 10.1002/adfm.201906068http://dx.doi.org/10.1002/adfm.201906068
FAN X H, ZHANG J C, ZHANG M, et al. Piezoluminescence from ferroelectric Ca3Ti2O7∶Pr3+ long-persistent phosphor [J]. Opt. Express, 2017, 25(13): 14238-14246. doi: 10.1364/oe.25.014238http://dx.doi.org/10.1364/oe.25.014238
BOTTERMAN J, VAN DEN EECKHOUT K, DE BAERE I, et al. Mechanoluminescence in BaSi2O2N2∶Eu [J]. Acta Mater., 2012, 60(15): 5494-5500. doi: 10.1016/j.actamat.2012.06.055http://dx.doi.org/10.1016/j.actamat.2012.06.055
MATSUI H, XU C N, AKIYAMA M, et al. Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4∶Mn and MgGa2O4∶Mn [J]. Jpn. J. Appl. Phys., 2000, 39(12R): 6582-6586. doi: 10.1143/jjap.39.6582http://dx.doi.org/10.1143/jjap.39.6582
MATSUI H, XU C N, LIU Y, et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence [J]. Phys. Rev. B, 2004, 69(23): 235109-1-7. doi: 10.1103/physrevb.69.235109http://dx.doi.org/10.1103/physrevb.69.235109
LI L J, WONG K L, LI P F, et al. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor [J]. J. Mater. Chem. C, 2016, 4(35): 8166-8170. doi: 10.1039/c6tc02760ahttp://dx.doi.org/10.1039/c6tc02760a
ZHANG P, ZHENG Z Z, WU L, et al. Self-reduction-related defects, long afterglow, and mechanoluminescence in centrosymmetric Li2ZnGeO4∶Mn2+ [J]. Inorg. Chem., 2021, 60(23): 18432-18441.
ZHANG J C, XUE X Y, ZHU Y F, et al. Ultra-long-delay sustainable and short-term-friction stable mechanoluminescence in Mn2+-activated NaCa2GeO4F with centrosymmetric structure [J]. Chem. Eng. J., 2021, 406: 126798. doi: 10.1016/j.cej.2020.126798http://dx.doi.org/10.1016/j.cej.2020.126798
YANG L, LI L, CHENG L X, et al. Intense and recoverable piezoluminescence in Pr3+-activated CaTiO3 with centrosymmetric structure [J]. Appl. Phys. Lett., 2021, 118(5): 053901-1-5. doi: 10.1063/5.0039360http://dx.doi.org/10.1063/5.0039360
XIAO Y, XIONG P X, ZHANG S, et al. Deep-red to NIR mechanoluminescence in centrosymmetric perovskite MgGeO3∶Mn2+ for potential dynamic signature anti-counterfeiting [J]. Chem. Eng. J., 2023, 453: 139671. doi: 10.1016/j.cej.2022.139671http://dx.doi.org/10.1016/j.cej.2022.139671
WANG M Y, WU H, DONG W B, et al. Advanced luminescence anticounterfeiting based on dynamic photoluminescence and non-pre-irradiation mechanoluminescence [J]. Inorg. Chem., 2022, 61(6): 2911-2919. doi: 10.1021/acs.inorgchem.1c03715http://dx.doi.org/10.1021/acs.inorgchem.1c03715
MATSUI H, XU C N, TATEYAMA H. Stress-stimulated luminescence from ZnAl2O4∶Mn [J]. Appl. Phys. Lett., 2001, 78(8): 1068-1070. doi: 10.1063/1.1350429http://dx.doi.org/10.1063/1.1350429
SU L, JIANG Z Y, TIAN Z, et al. Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence [J]. Nano Energy, 2021, 79: 105431-1-10. doi: 10.1016/j.nanoen.2020.105431http://dx.doi.org/10.1016/j.nanoen.2020.105431
0
Views
357
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution