DING Chuan,JIANG Xuesong,XU Zhengyin,et al.Determination and Experimental Study of OLED Junction Temperature Based on PtOEP Molecular Temperature Probe[J].Chinese Journal of Luminescence,2023,44(06):1069-1076.
DING Chuan,JIANG Xuesong,XU Zhengyin,et al.Determination and Experimental Study of OLED Junction Temperature Based on PtOEP Molecular Temperature Probe[J].Chinese Journal of Luminescence,2023,44(06):1069-1076. DOI: 10.37188/CJL.20220417.
Determination and Experimental Study of OLED Junction Temperature Based on PtOEP Molecular Temperature Probe
The thermal effect of OLED device was studied by PtOEP molecular temperature probe and different patterned OLED substrate, which was prepared with positive photosensitive polyimide (PSPI) and photolithography. The results show when the pixel size is less than 500 μm, the thermal effect is positively correlated with the pixel size, and independent of the line width and total opening area. However, when the pixel size reaches more than 500 μm, the thermal effect does not increase further. When 5 μm pixel works at a current density of 10 mA/cm
2
at room temperature, the temperature of the device is 303.29 K. When the pixel size is 2 000 μm under the same conditions, the device temperature can reach 314.65 K. When the ambient temperature rises to 323.15 K, the thermal effect of the device shows the same trend. The EQE curves of devices with different thermal effects show that the increase of device temperature leads to the decrease of external quantum efficiency. The reason is that the increase of temperature improves carrier migration rate, but also increases the probability of collision between triplet excitons and between excitons and polarons, which leads to the exciton quenching and the decrease of efficiency.
关键词
图案化OLEDPtOEP分子温度探针结温
Keywords
patterned OLEDPtOEPmolecular temperature probejunction temperature
references
GHOSH A, KHAYRULLIN I, WANG Q, et al. 3.1: Invited paper: OLED micro-displays for VR/AR applications [J]. SID Symp. Dig. Tech. Papers, 2019, 50(S1): 26-27. doi: 10.1002/sdtp.13372http://dx.doi.org/10.1002/sdtp.13372
WEI B, FURUKAWA K, AMAGAI J, et al. A dynamic model for injection and transport of charge carriers in pulsed organic light-emitting diodes [J]. Semicond. Sci. Technol., 2004, 19(5): L56-L59. doi: 10.1088/0268-1242/19/5/l04http://dx.doi.org/10.1088/0268-1242/19/5/l04
YANG L Q, CHEN W, WEI B, et al. Temperature and emitting area dependence of red organic light-emitting diode performance [J]. Phys. Status Solidi A, 2014, 211(7): 1488-1492. doi: 10.1002/pssa.201330437http://dx.doi.org/10.1002/pssa.201330437
NI C Y. Simulation Analysis and Improvement of Low⁃cost Cellphone Autonomous Heat Dissipation [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
STURM J C, WILSON W, IODICE H. Thermal effects and scaling in organic light-emitting flat-panel displays [J]. IEEE J. Sel. Top. Quantum Electron., 1998, 4(1): 75-82. doi: 10.1109/2944.669471http://dx.doi.org/10.1109/2944.669471
PAN S H, YU H, XU H F, et al. Simulated and experimental analyses of the thermal dissipation of organic light-emitting diodes [J]. Optik, 2023, 272: 170332-1-8. doi: 10.1016/j.ijleo.2022.170332http://dx.doi.org/10.1016/j.ijleo.2022.170332
KIRCH A, FISCHER A, LIERO M, et al. Experimental proof of Joule heating-induced switched-back regions in OLEDs [J]. Light Sci. Appl., 2020, 9(1): 5-1-10. doi: 10.1038/s41377-019-0236-9http://dx.doi.org/10.1038/s41377-019-0236-9
VU M C, MANI D, JEONG T H, et al. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications [J]. Chem. Eng. J., 2022, 429: 132182-1-10. doi: 10.1016/j.cej.2021.132182http://dx.doi.org/10.1016/j.cej.2021.132182
WEI N, XIONG L H, ZHANG M Y, et al. Fabrication of tiny-size OLED and its optical and electrical properties [J]. J. Optoelectron. Laser, 2012, 23(10): 1876-1879. (in Chinese)
POHL L, KOHÁRI Z, POPPE A. Vertical natural convection models and their effect on failure analysis in electro-thermal simulation of large-surface OLEDs [J]. Microelectron. Reliab., 2018, 85: 198-206. doi: 10.1016/j.microrel.2018.05.002http://dx.doi.org/10.1016/j.microrel.2018.05.002
WU F B, SHI X D. Heat dissipation analysis of coal mine lighting based on OLED light source [J]. Energy Technol. Manage., 2016, 41(S1): 191-192. (in Chinese)
UCHIYAMA S, DE SILVA A P, IWAI K. Luminescent molecular thermometers [J]. J. Chem. Educ., 2006, 83(5): 720. doi: 10.1021/ed083p720http://dx.doi.org/10.1021/ed083p720
BANSAL A K, HOLZER W, PENZKOFER A, et al. Absorption and emission spectroscopic characterization of platinum-octaethyl-porphyrin (PtOEP) [J]. Chem. Phys., 2006, 330(1-2): 118-129. doi: 10.1016/j.chemphys.2006.08.002http://dx.doi.org/10.1016/j.chemphys.2006.08.002
KALINOWSKI J, STAMPOR W, SZMYTKOWSKI J, et al. Photophysics of an electrophosphorescent platinum (Ⅱ) porphyrin in solid films [J]. J. Chem. Phys., 2005, 122(15): 154710-1-16. doi: 10.1063/1.1878612http://dx.doi.org/10.1063/1.1878612
LUPTON J M, KLEIN J. Hot band emission and energy transfer in organic electrophosphorescent devices [J]. Chem. Phys. Lett., 2002, 363(3-4): 204-210. doi: 10.1016/s0009-2614(02)00987-9http://dx.doi.org/10.1016/s0009-2614(02)00987-9
LUPTON J M. A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin [J]. Appl. Phys. Lett., 2002, 81(13): 2478-2480. doi: 10.1063/1.1509115http://dx.doi.org/10.1063/1.1509115
MANNA B, NANDI A. The triplet exciton dynamics and diffusion properties of zinc and platinum-octaethylporphyrin nanoaggregates [J]. J. Photochem. Photobiol. A: Chem., 2021, 408: 113105-1-9. doi: 10.1016/j.jphotochem.2020.113105http://dx.doi.org/10.1016/j.jphotochem.2020.113105
MATSUSHIMA T, ADACHI C. Observation of extremely high current densities on order of MA/cm2 in copper phthalocyanine thin-film devices with submicron active areas [J]. Jpn. J. Appl. Phys., 2007, 46(12L): L1179-L1181. doi: 10.1143/jjap.46.l1179http://dx.doi.org/10.1143/jjap.46.l1179
VAN EERSEL H, BOBBERT P A, JANSSEN R A J, et al. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: evidence for dominant role of triplet-polaron quenching [J]. Appl. Phys. Lett., 2014, 105(14): 143303-1-5. doi: 10.1063/1.4897534http://dx.doi.org/10.1063/1.4897534
WEI B, ICHIKAWA M, FURUKAWA K, et al. High peak luminance of molecularly dye-doped organic light-emitting diodes under intense voltage pulses [J]. J. Appl. Phys., 2005, 98(4): 044506-1-5. doi: 10.1063/1.2009081http://dx.doi.org/10.1063/1.2009081
JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10 000 pixels per inch [J]. Science, 2020, 370(6515): 459-463. doi: 10.1126/science.abc8530http://dx.doi.org/10.1126/science.abc8530
KWON S K, BAEK J H, CHOI H C, et al. OLED pixel shrinkage dependence with cathode influenced by thermal effect [J]. IEEE Electron Device Lett., 2018, 39(10): 1536-1539.
NAKANOTANI H, SASABE H, ADACHI C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density [J]. Appl. Phys. Lett., 2005, 86(21): 213506-1-3. doi: 10.1063/1.1939075http://dx.doi.org/10.1063/1.1939075
NAKANOTANI H, OYAMADA T, KAWAMURA Y, et al. Injection and transport of high current density over 1 000 A/cm2 in organic light emitting diodes under pulse excitation [J]. Jpn. J. Appl. Phys., 2005, 44(6R): 3659-3662. doi: 10.1143/jjap.44.3659http://dx.doi.org/10.1143/jjap.44.3659
AZRAIN M M, MANSOR M R, OMAR G, et al. Effect of high thermal stress on the organic light emitting diodes (OLEDs) performances [J]. Synth. Met., 2019, 247: 191-201. doi: 10.1016/j.synthmet.2018.12.008http://dx.doi.org/10.1016/j.synthmet.2018.12.008