浏览全部资源
扫码关注微信
1.暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
2.五邑大学 智能制造学部, 广东 江门 529020
Published:05 June 2023,
Received:14 December 2022,
Revised:29 December 2022,
扫 描 看 全 文
谢光起,马梦恩,杨丹妮等.双自组装单分子层修饰氧化镍制备高效率钙钛矿太阳电池及组件[J].发光学报,2023,44(06):1023-1031.
XIE Guangqi,MA Mengen,YANG Danni,et al.Co-assembled Monolayers Modified Nickel Oxide for High Efficient Perovskite Solar Cells and Modules[J].Chinese Journal of Luminescence,2023,44(06):1023-1031.
谢光起,马梦恩,杨丹妮等.双自组装单分子层修饰氧化镍制备高效率钙钛矿太阳电池及组件[J].发光学报,2023,44(06):1023-1031. DOI: 10.37188/CJL.20220414.
XIE Guangqi,MA Mengen,YANG Danni,et al.Co-assembled Monolayers Modified Nickel Oxide for High Efficient Perovskite Solar Cells and Modules[J].Chinese Journal of Luminescence,2023,44(06):1023-1031. DOI: 10.37188/CJL.20220414.
氧化镍(NiO
x
)作为无机p型半导体,常用于倒置钙钛矿太阳能电池(PSCs)中的空穴传输层(HTL),但本身存在的高缺陷密度和与钙钛矿不相匹配的能级排布限制了PSCs的能量转换效率。本文通过引入双自组装单分子层修饰氧化镍界面,钝化氧化镍材料自身缺陷,改善能级匹配,促进了界面处光生载流子的提取和传输,提高了PSCs的开路电压(
V
oc
)和填充因子(FF),最终将刮涂氧化镍基PSCs的效率提升到20.38%,而且未封装的器件在氮气氛围中用85 ℃老化1 000 h后仍维持原始效率的96%。更重要的是,我们以此制备了孔径面积为60.84 cm
2
、由13节子电池串联而成的钙钛矿组件,效率达到了17.04%。
Nickel oxide (NiO
x
), an inorganic p-type semiconductor, is commonly used as the hole transporting layer (HTL) for inverted perovskite solar cells (PSCs). However, the high defect density of NiO
x
and mismatched energy levels with the perovskite layer strongly limit the efficiency of PSCs. In this work, the co-assembled monolayer is introduced to modify the interface of NiO
x
, which was demonstrated to passivate the defects and improve the energy level alignment, leading to the enhancement of charge extraction and transmission at the interface. Finally, the blade-coated PSCs yield a power conversion efficiency of 20.38% due to the improvement on open circuit voltage (
V
oc
) and filling factor (FF). Moreover, the device without encapsulation can maintain 96% of the initial efficiency after aging at 85 ℃ for 1 000 h in nitrogen atmosphere. More importantly, we have fabricated a perovskite solar module with an aperture area of 60.84 cm
2
, which is composed of 13 sub cells in series, and the efficiency has reached 17.04%.
钙钛矿太阳电池组件能级匹配电荷抽取高效率
perovskite solar cellsmodulebandgap alignmentcharge extractionhigh efficiency
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides [J]. Nature, 2023, 616(7958): 724-730. doi: 10.1038/s41586-023-05825-yhttp://dx.doi.org/10.1038/s41586-023-05825-y
BOYD C C, SHALLCROSS R C, MOOT T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells [J]. Joule, 2020, 4(8): 1759-1775. doi: 10.1016/j.joule.2020.06.004http://dx.doi.org/10.1016/j.joule.2020.06.004
DI GIROLAMO D, DI GIACOMO F, MATTEOCCI F, et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics [J]. Chem. Sci., 2020, 11(30): 7746-7759. doi: 10.1039/d0sc02859bhttp://dx.doi.org/10.1039/d0sc02859b
GŁOWIENKA D, ZHANG D, DI GIACOMO F, et al. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3 [J]. Nano Energy, 2020, 67: 104186-1-11. doi: 10.1016/j.nanoen.2019.104186http://dx.doi.org/10.1016/j.nanoen.2019.104186
CHEN W, ZHOU Y C, CHEN G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(19): 1803872-1-10. doi: 10.1002/aenm.201803872http://dx.doi.org/10.1002/aenm.201803872
NIU Q L, DENG Y K, CUI D Q, et al. Enhancing the performance of perovskite solar cells via interface modification [J]. J. Mater. Sci., 2019, 54(22): 14134-14142. doi: 10.1007/s10853-019-03898-7http://dx.doi.org/10.1007/s10853-019-03898-7
WANG T, CHENG Z D, ZHOU Y L, et al. Highly efficient and stable perovskite solar cells via bilateral passivation layers [J]. J. Mater. Chem. A, 2019, 7(38): 21730-21739. doi: 10.1039/c9ta08084hhttp://dx.doi.org/10.1039/c9ta08084h
WANG T, DING D, ZHENG H, et al. Efficient inverted planar perovskite solar cells using ultraviolet/ozone-treated NiOx as the hole transport layer [J]. Sol. RRL, 2019, 3(6): 1900045. doi: 10.1002/solr.201900045http://dx.doi.org/10.1002/solr.201900045
SINGH N, TAO Y T. Effect of surface modification of nickel oxide hole-transport layer via self-assembled monolayers in perovskite solar cells [J]. Nano Sel., 2021, 2(12): 2390-2399. doi: 10.1002/nano.202100004http://dx.doi.org/10.1002/nano.202100004
ZHU T, SU J, LABAT F, et al. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 12(1): 744-752. doi: 10.1021/acsami.9b18034http://dx.doi.org/10.1021/acsami.9b18034
SUN J J, SHOU C H, SUN J S, et al. NiOx-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells [J]. Sol. RRL, 2021, 5(11): 2100663-1-8. doi: 10.1002/solr.202100663http://dx.doi.org/10.1002/solr.202100663
DENG X, QI F, LI F Z, et al. Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability [J]. Angew. Chem. Int. Ed., 2022, 61(30): e202203088-1-8. doi: 10.1002/anie.202203088http://dx.doi.org/10.1002/anie.202203088
LI L D, WANG Y R, WANG X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact [J]. Nat. Energy, 2022, 7(8): 708-717. doi: 10.1038/s41560-022-01045-2http://dx.doi.org/10.1038/s41560-022-01045-2
XIAO M Y, LU T Y, LIN T, et al. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy [J]. Adv. Energy Mater., 2020, 10(26): 1903053-1-10. doi: 10.1002/aenm.201903053http://dx.doi.org/10.1002/aenm.201903053
LIU C, YANG Y Z, ZHANG C L, et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules [J]. Adv. Mater., 2020, 32(8): 1907361-1-9. doi: 10.1002/adma.201907361http://dx.doi.org/10.1002/adma.201907361
GAO Y Y, LIU C, XIE Y, et al. Can nanosecond laser achieve high-performance perovskite solar modules with aperture area efficiency over 21%?[J]. Adv. Energy Mater., 2022, 12(41): 2202287-1-8. doi: 10.1002/aenm.202202287http://dx.doi.org/10.1002/aenm.202202287
AL-ASHOURI A, MAGOMEDOV A, ROSS M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J]. Energy Environ. Sci., 2019, 12(11): 3356-3369. doi: 10.1039/c9ee02268fhttp://dx.doi.org/10.1039/c9ee02268f
KIM S Y, CHO S J, BYEON S E, et al. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(44): 2002606-1-21. doi: 10.1002/aenm.202002606http://dx.doi.org/10.1002/aenm.202002606
ALI F, ROLDÁN-CARMONA C, SOHAIL M, et al. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability [J]. Adv. Energy Mater., 2020, 10(48): 2002989-1-24. doi: 10.1002/aenm.202002989http://dx.doi.org/10.1002/aenm.202002989
BULLIARD X, IHN S G, YUN S, et al. Enhanced performance in polymer solar cells by surface energy control [J]. Adv. Funct. Mater., 2010, 20(24): 4381-4387. doi: 10.1002/adfm.201000960http://dx.doi.org/10.1002/adfm.201000960
LI F M, SHEN Z T, WENG Y J, et al. Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability [J]. Adv. Funct. Mater., 2020, 30(45): 2004933-1-9. doi: 10.1002/adfm.202004933http://dx.doi.org/10.1002/adfm.202004933
邹宇, 李昭, 陈衡慧, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响 [J]. 发光学报, 2021, 42(5): 682-690. doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
ZOU Y, LI Z, CHEN H H, et al. Effect of interfacial modification for TiO2-based planar perovskite solar cells using NaTFSI [J]. Chin. J. Lumin., 2021, 42(5): 682-690. (in Chinese). doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
ZHU X J, DU M Y, FENG J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport [J]. Angew. Chem. Int. Ed., 2021, 60(8): 4238-4244. doi: 10.1002/anie.202010987http://dx.doi.org/10.1002/anie.202010987
LI W Z, ZHANG C L, MA Y P, et al. In situ induced core/shell stabilized hybrid perovskites via gallium(Ⅲ) acetylacetonate intermediate towards highly efficient and stable solar cells [J]. Energy Environ. Sci., 2018, 11(2): 286-293. doi: 10.1039/c7ee03113khttp://dx.doi.org/10.1039/c7ee03113k
MA J, LIN Z H, GUO X, et al. Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20% [J]. Sol. RRL, 2019, 3(7): 1900096. doi: 10.1002/solr.201900096http://dx.doi.org/10.1002/solr.201900096
WANG Q, CHUEH C C, ZHAO T, et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells [J]. ChemSusChem, 2017, 10(19): 3794-3803. doi: 10.1002/cssc.201701262http://dx.doi.org/10.1002/cssc.201701262
CHEN H, YE F, TANG W T, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules [J]. Nature, 2017, 550(7674): 92-95. doi: 10.1038/nature23877http://dx.doi.org/10.1038/nature23877
0
Views
219
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution