1.深圳大学 材料学院, 广东 深圳 518060
2.韩山师范学院 材料科学与工程学院, 广东 潮州 521041
扫 描 看 全 文
林淑地,吴海霞,宋捷等.沉积参数对铯铅溴钙钛矿薄膜中CsPb2Br5相结构演变和发光特性的影响[J].发光学报,2023,44(04):634-640.
LIN Shudi,WU Haixia,SONG Jie,et al.Effect of Deposition Parameters on Luminescence Properties and Structure Evolution of CsPb2Br5 Phase in Cesium Lead Bromide Perovskite Films[J].Chinese Journal of Luminescence,2023,44(04):634-640.
林淑地,吴海霞,宋捷等.沉积参数对铯铅溴钙钛矿薄膜中CsPb2Br5相结构演变和发光特性的影响[J].发光学报,2023,44(04):634-640. DOI: 10.37188/CJL.20220335.
LIN Shudi,WU Haixia,SONG Jie,et al.Effect of Deposition Parameters on Luminescence Properties and Structure Evolution of CsPb2Br5 Phase in Cesium Lead Bromide Perovskite Films[J].Chinese Journal of Luminescence,2023,44(04):634-640. DOI: 10.37188/CJL.20220335.
基于化学气相沉积(CVD)法制备的铯铅溴钙钛矿薄膜具有优异的光电特性,然而薄膜通常存在CsPbBr,3,和CsPb,2,Br,5,两个不同的相结构区域。本文通过CVD法制备了铯铅溴钙钛矿薄膜,并利用X射线衍射(XRD)、扫描电镜(SEM)、电子能谱仪(EDS)及荧光光谱仪研究了反应气压与N,2,流量对其中的CsPb,2,Br,5,相结构的影响。实验结果表明,反应气压的变化对CsPb,2,Br,5,相结构无影响 ;与此不同,随着N,2,流量的减少,薄膜中部分CsPb,2,Br,5,相结构逐渐转变为CsPbBr,3,相结构,其发光也由以~630 nm为主的宽带发射转变为以~530 nm为主的窄带发射。实验表明,N,2,流量是调控CsPb,2,Br,5,相结构和发光特性的有效手段。
The cesium lead bromide perovskite thin films prepared by chemical vapor deposition (CVD) have excellent optoelectronic properties, but the thin films generally have two different phase structures, CsPbBr,3, and CsPb,2,Br,5,. In our work, CVD method is considered to prepare cesium lead bromide perovskite thin films, and the effects of reaction pressure and N,2, flow on CsPb,2,Br,5, in the thin films were studied by X-ray diffraction (XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and fluorescence spectrometer. The results show that the change of the reaction pressure has no effect on the CsPb,2,Br,5 ,phase. However, with the decrease of the N,2, flow, part of the CsPb,2,Br,5 ,phase in the film gradually transforms into the CsPbBr,3 ,phase, and its luminescence also converts from a broadband emission dominated by ~630 nm to a narrowband emission dominated by ~530 nm. Experimental results reveal that N,2, flow is an effective means to control the phase structure and luminescence properties of CsPb,2,Br,5,.
化学气相沉积铯铅溴钙钛矿薄膜CsPb2Br5相结构
chemical vapor deposition(CVD)cesium lead bromide perovskite filmCsPb2Br5 phase
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499(7458): 316-319. doi: 10.1038/nature12340http://dx.doi.org/10.1038/nature12340
YANG J, LIU Z Z, HU Z P, et al. Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles [J]. J. Lumin., 2019, 208: 402-407. doi: 10.1016/j.jlumin.2018.12.055http://dx.doi.org/10.1016/j.jlumin.2018.12.055
YANG Z, ZHANG H, FANG Z H, et al. One-step precipitated all-inorganic perovskite QDs from amorphous media for backlighting display and reproducible laser-driven white lighting [J]. Chem. Eng. J., 2022, 427: 131379-1-8. doi: 10.1016/j.cej.2021.131379http://dx.doi.org/10.1016/j.cej.2021.131379
YAN S K, LI Q, ZHANG X, et al. A vertical structure photodetector based on all‐inorganic perovskite quantum dots [J]. J. Soc. Inf. Displ., 2020, 28(1): 9-15. doi: 10.1002/jsid.853http://dx.doi.org/10.1002/jsid.853
SALEEM M I, YANG S Y, ZHI R N, et al. Surface engineering of all‐inorganic perovskite quantum dots with quasi core-shell technique for high‐performance photodetectors [J]. Adv. Mater. Interfaces, 2020, 7(11): 2000360-1-7. doi: 10.1002/admi.202000360http://dx.doi.org/10.1002/admi.202000360
XUAN T T, YANG X F, LOU S Q, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes [J]. Nanoscale, 2017, 9(40): 15286-15290. doi: 10.1039/c7nr04179ahttp://dx.doi.org/10.1039/c7nr04179a
LING Y C, TIAN Y, WANG X, et al. Enhanced optical and electrical properties of polymer‐assisted all‐inorganic perovskites for light‐emitting diodes [J]. Adv. Mater., 2016, 28(40): 8983-8989. doi: 10.1002/adma.201602513http://dx.doi.org/10.1002/adma.201602513
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109http://dx.doi.org/10.1002/adfm.201600109
CHO H, WOLF C, KIM J S, et al. High-efficiency solution-processed inorganic metal halide perovskite light‐emitting diodes [J]. Adv. Mater., 2017, 29(31): 1700579-1-8. doi: 10.1002/adma.201700579http://dx.doi.org/10.1002/adma.201700579
XU W L, NIU M S, YANG X Y, et al. Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors [J]. Chin. Chem. Lett., 2021, 32(1): 489-492. doi: 10.1016/j.cclet.2020.05.017http://dx.doi.org/10.1016/j.cclet.2020.05.017
ZHONG Y G, LIAO K, DU W N, et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: toward laser array application [J]. ACS Nano, 2020, 14(11): 15605-15615. doi: 10.1021/acsnano.0c06380http://dx.doi.org/10.1021/acsnano.0c06380
BAO C Y, PENG X, YING L Y, et al. Investigation of CsPbBr3 CVD dynamics at various temperatures [J]. Phys. Chem. Chem. Phys., 2021, 23(40): 23214-23218. doi: 10.1039/d1cp03794chttp://dx.doi.org/10.1039/d1cp03794c
ZHANG Y H, SAIDAMINOV M I, DURSUN I, et al. Zero-dimensional Cs4PbBr6 perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2017, 8(5): 961-965. doi: 10.1021/acs.jpclett.7b00105http://dx.doi.org/10.1021/acs.jpclett.7b00105
TANG X S, HU Z P, YUAN W, et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties [J]. Adv. Opt. Mater., 2017, 5(3): 1600788-1-8. doi: 10.1002/adom.201600788http://dx.doi.org/10.1002/adom.201600788
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
DURSUN I, DE BASTIANI M, TUREDI B, et al. CsPb2Br5 single crystals: synthesis and characterization [J]. ChemSusChem, 2017, 10(19): 3746-3749. doi: 10.1002/cssc.201701131http://dx.doi.org/10.1002/cssc.201701131
CHENG S J, CHEN Y, ZHONG H Z. Centimeter-sized Na-doped CsPb2Br5 single crystals with efficient self-trapped exciton emission [J]. Cryst. Growth Des., 2022, 22(7): 4025-4030. doi: 10.1021/acs.cgd.2c00526http://dx.doi.org/10.1021/acs.cgd.2c00526
WANG K H, WU L, LI L, et al. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange [J]. Angew. Chem., 2016, 128(29): 8468-8472. doi: 10.1002/ange.201602787http://dx.doi.org/10.1002/ange.201602787
LI G P, WANG H, ZHU Z F, et al. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap [J]. Chem. Commun., 2016, 52(75): 11296-11299. doi: 10.1039/c6cc05877ahttp://dx.doi.org/10.1039/c6cc05877a
SEBASTIAN M, PETERS J A, STOUMPOS C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3 [J]. Phys. Rev. B, 2015, 92(23): 235210-1-9. doi: 10.1103/physrevb.92.235210http://dx.doi.org/10.1103/physrevb.92.235210
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
GABELLONI F, BICCARI F, FALSINI N, et al. Long-living nonlinear behavior in CsPbBr3 carrier recombination dynamics [J]. Nanophotonics, 2019, 8(9): 1447-1455. doi: 10.1515/nanoph-2019-0013http://dx.doi.org/10.1515/nanoph-2019-0013
PETERS J A, LIU Z F, YU R, et al. Carrier recombination mechanism in CsPbBr3 revealed by time-resolved photoluminescence spectroscopy [J]. Phys. Rev. B, 2019, 100(23): 235305-1-9. doi: 10.1103/physrevb.100.235305http://dx.doi.org/10.1103/physrevb.100.235305
KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. J. Phys. Chem. Lett., 2017, 8(2): 489-493. doi: 10.1021/acs.jpclett.6b02800http://dx.doi.org/10.1021/acs.jpclett.6b02800
HUANG R, LIN X Y, YU Y P, et al. Fast growth of polycrystalline film in SiCl4/H2 plasma [J]. Chin. Phys. Lett., 2004, 21(6): 1168-1170. doi: 10.1088/0256-307x/21/6/053http://dx.doi.org/10.1088/0256-307x/21/6/053
0
Views
44
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution