浏览全部资源
扫码关注微信
1.深圳大学 材料学院, 广东 深圳 518060
2.韩山师范学院 材料科学与工程学院, 广东 潮州 521041
Published:05 April 2023,
Received:15 September 2022,
Revised:04 October 2022,
扫 描 看 全 文
林淑地,吴海霞,宋捷等.沉积参数对铯铅溴钙钛矿薄膜中CsPb2Br5相结构演变和发光特性的影响[J].发光学报,2023,44(04):634-640.
LIN Shudi,WU Haixia,SONG Jie,et al.Effect of Deposition Parameters on Luminescence Properties and Structure Evolution of CsPb2Br5 Phase in Cesium Lead Bromide Perovskite Films[J].Chinese Journal of Luminescence,2023,44(04):634-640.
林淑地,吴海霞,宋捷等.沉积参数对铯铅溴钙钛矿薄膜中CsPb2Br5相结构演变和发光特性的影响[J].发光学报,2023,44(04):634-640. DOI: 10.37188/CJL.20220335.
LIN Shudi,WU Haixia,SONG Jie,et al.Effect of Deposition Parameters on Luminescence Properties and Structure Evolution of CsPb2Br5 Phase in Cesium Lead Bromide Perovskite Films[J].Chinese Journal of Luminescence,2023,44(04):634-640. DOI: 10.37188/CJL.20220335.
基于化学气相沉积(CVD)法制备的铯铅溴钙钛矿薄膜具有优异的光电特性,然而薄膜通常存在CsPbBr
3
和CsPb
2
Br
5
两个不同的相结构区域。本文通过CVD法制备了铯铅溴钙钛矿薄膜,并利用X射线衍射(XRD)、扫描电镜(SEM)、电子能谱仪(EDS)及荧光光谱仪研究了反应气压与N
2
流量对其中的CsPb
2
Br
5
相结构的影响。实验结果表明,反应气压的变化对CsPb
2
Br
5
相结构无影响 ;与此不同,随着N
2
流量的减少,薄膜中部分CsPb
2
Br
5
相结构逐渐转变为CsPbBr
3
相结构,其发光也由以~630 nm为主的宽带发射转变为以~530 nm为主的窄带发射。实验表明,N
2
流量是调控CsPb
2
Br
5
相结构和发光特性的有效手段。
The cesium lead bromide perovskite thin films prepared by chemical vapor deposition (CVD) have excellent optoelectronic properties, but the thin films generally have two different phase structures, CsPbBr
3
and CsPb
2
Br
5
. In our work, CVD method is considered to prepare cesium lead bromide perovskite thin films, and the effects of reaction pressure and N
2
flow on CsPb
2
Br
5
in the thin films were studied by X-ray diffraction (XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and fluorescence spectrometer. The results show that the change of the reaction pressure has no effect on the CsPb
2
Br
5
phase. However, with the decrease of the N
2
flow, part of the CsPb
2
Br
5
phase in the film gradually transforms into the CsPbBr
3
phase, and its luminescence also converts from a broadband emission dominated by ~630 nm to a narrowband emission dominated by ~530 nm. Experimental results reveal that N
2
flow is an effective means to control the phase structure and luminescence properties of CsPb
2
Br
5
.
化学气相沉积铯铅溴钙钛矿薄膜CsPb2Br5相结构
chemical vapor deposition(CVD)cesium lead bromide perovskite filmCsPb2Br5 phase
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499(7458): 316-319. doi: 10.1038/nature12340http://dx.doi.org/10.1038/nature12340
YANG J, LIU Z Z, HU Z P, et al. Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles [J]. J. Lumin., 2019, 208: 402-407. doi: 10.1016/j.jlumin.2018.12.055http://dx.doi.org/10.1016/j.jlumin.2018.12.055
YANG Z, ZHANG H, FANG Z H, et al. One-step precipitated all-inorganic perovskite QDs from amorphous media for backlighting display and reproducible laser-driven white lighting [J]. Chem. Eng. J., 2022, 427: 131379-1-8. doi: 10.1016/j.cej.2021.131379http://dx.doi.org/10.1016/j.cej.2021.131379
YAN S K, LI Q, ZHANG X, et al. A vertical structure photodetector based on all‐inorganic perovskite quantum dots [J]. J. Soc. Inf. Displ., 2020, 28(1): 9-15. doi: 10.1002/jsid.853http://dx.doi.org/10.1002/jsid.853
SALEEM M I, YANG S Y, ZHI R N, et al. Surface engineering of all‐inorganic perovskite quantum dots with quasi core-shell technique for high‐performance photodetectors [J]. Adv. Mater. Interfaces, 2020, 7(11): 2000360-1-7. doi: 10.1002/admi.202000360http://dx.doi.org/10.1002/admi.202000360
XUAN T T, YANG X F, LOU S Q, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes [J]. Nanoscale, 2017, 9(40): 15286-15290. doi: 10.1039/c7nr04179ahttp://dx.doi.org/10.1039/c7nr04179a
LING Y C, TIAN Y, WANG X, et al. Enhanced optical and electrical properties of polymer‐assisted all‐inorganic perovskites for light‐emitting diodes [J]. Adv. Mater., 2016, 28(40): 8983-8989. doi: 10.1002/adma.201602513http://dx.doi.org/10.1002/adma.201602513
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109http://dx.doi.org/10.1002/adfm.201600109
CHO H, WOLF C, KIM J S, et al. High-efficiency solution-processed inorganic metal halide perovskite light‐emitting diodes [J]. Adv. Mater., 2017, 29(31): 1700579-1-8. doi: 10.1002/adma.201700579http://dx.doi.org/10.1002/adma.201700579
XU W L, NIU M S, YANG X Y, et al. Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors [J]. Chin. Chem. Lett., 2021, 32(1): 489-492. doi: 10.1016/j.cclet.2020.05.017http://dx.doi.org/10.1016/j.cclet.2020.05.017
ZHONG Y G, LIAO K, DU W N, et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: toward laser array application [J]. ACS Nano, 2020, 14(11): 15605-15615. doi: 10.1021/acsnano.0c06380http://dx.doi.org/10.1021/acsnano.0c06380
BAO C Y, PENG X, YING L Y, et al. Investigation of CsPbBr3 CVD dynamics at various temperatures [J]. Phys. Chem. Chem. Phys., 2021, 23(40): 23214-23218. doi: 10.1039/d1cp03794chttp://dx.doi.org/10.1039/d1cp03794c
ZHANG Y H, SAIDAMINOV M I, DURSUN I, et al. Zero-dimensional Cs4PbBr6 perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2017, 8(5): 961-965. doi: 10.1021/acs.jpclett.7b00105http://dx.doi.org/10.1021/acs.jpclett.7b00105
TANG X S, HU Z P, YUAN W, et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties [J]. Adv. Opt. Mater., 2017, 5(3): 1600788-1-8. doi: 10.1002/adom.201600788http://dx.doi.org/10.1002/adom.201600788
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
DURSUN I, DE BASTIANI M, TUREDI B, et al. CsPb2Br5 single crystals: synthesis and characterization [J]. ChemSusChem, 2017, 10(19): 3746-3749. doi: 10.1002/cssc.201701131http://dx.doi.org/10.1002/cssc.201701131
CHENG S J, CHEN Y, ZHONG H Z. Centimeter-sized Na-doped CsPb2Br5 single crystals with efficient self-trapped exciton emission [J]. Cryst. Growth Des., 2022, 22(7): 4025-4030. doi: 10.1021/acs.cgd.2c00526http://dx.doi.org/10.1021/acs.cgd.2c00526
WANG K H, WU L, LI L, et al. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange [J]. Angew. Chem., 2016, 128(29): 8468-8472. doi: 10.1002/ange.201602787http://dx.doi.org/10.1002/ange.201602787
LI G P, WANG H, ZHU Z F, et al. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap [J]. Chem. Commun., 2016, 52(75): 11296-11299. doi: 10.1039/c6cc05877ahttp://dx.doi.org/10.1039/c6cc05877a
SEBASTIAN M, PETERS J A, STOUMPOS C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3 [J]. Phys. Rev. B, 2015, 92(23): 235210-1-9. doi: 10.1103/physrevb.92.235210http://dx.doi.org/10.1103/physrevb.92.235210
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
GABELLONI F, BICCARI F, FALSINI N, et al. Long-living nonlinear behavior in CsPbBr3 carrier recombination dynamics [J]. Nanophotonics, 2019, 8(9): 1447-1455. doi: 10.1515/nanoph-2019-0013http://dx.doi.org/10.1515/nanoph-2019-0013
PETERS J A, LIU Z F, YU R, et al. Carrier recombination mechanism in CsPbBr3 revealed by time-resolved photoluminescence spectroscopy [J]. Phys. Rev. B, 2019, 100(23): 235305-1-9. doi: 10.1103/physrevb.100.235305http://dx.doi.org/10.1103/physrevb.100.235305
KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. J. Phys. Chem. Lett., 2017, 8(2): 489-493. doi: 10.1021/acs.jpclett.6b02800http://dx.doi.org/10.1021/acs.jpclett.6b02800
HUANG R, LIN X Y, YU Y P, et al. Fast growth of polycrystalline film in SiCl4/H2 plasma [J]. Chin. Phys. Lett., 2004, 21(6): 1168-1170. doi: 10.1088/0256-307x/21/6/053http://dx.doi.org/10.1088/0256-307x/21/6/053
0
Views
150
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution