浏览全部资源
扫码关注微信
1.东华大学 纤维材料改性国家重点实验室, 上海 201620
2.东华大学 材料科学与工程学院, 上海 201620
Published:05 May 2023,
Received:13 September 2022,
Revised:08 October 2022,
扫 描 看 全 文
吴聪影,赵雪,刘玉慧等.高效紫色荧光碳点制备及光学pH检测应用[J].发光学报,2023,44(05):921-931.
WU Congying,ZHAO Xue,LIU Yuhui,et al.Preparation and Application of Highly Fluorescent Purple-emissive Carbon Dots for Optical pH Measurement[J].Chinese Journal of Luminescence,2023,44(05):921-931.
吴聪影,赵雪,刘玉慧等.高效紫色荧光碳点制备及光学pH检测应用[J].发光学报,2023,44(05):921-931. DOI: 10.37188/CJL.20220330.
WU Congying,ZHAO Xue,LIU Yuhui,et al.Preparation and Application of Highly Fluorescent Purple-emissive Carbon Dots for Optical pH Measurement[J].Chinese Journal of Luminescence,2023,44(05):921-931. DOI: 10.37188/CJL.20220330.
紫色荧光碳点(P⁃CDs)的制备通常存在制备复杂、量子产率低、荧光强度低等缺点。本文以邻苯二胺(OPD)和间苯二胺(MPD)为氮源,柠檬酸为碳源,在120 ℃的低温条件下,通过一步水热法成功获得了绝对量子产率为5.3%的高荧光P⁃CDs。XPS和FT⁃IR结果表明,所有合成的P⁃CDs具有相似的官能团,但含量不同;OPD/MPD的比例可有效调控P⁃CDs的荧光强度。所得P⁃CDs具有较好的光稳定性和盐稳定性。值得注意的是,当pH为1~3或10~13时,P⁃CDs的荧光颜色明显转变为绿色。上述独特的pH依赖性荧光色行为确保了其在光学pH传感中的潜在应用。
The preparation of purple-emissive carbon dots (P-CDs) usually accompanies the disadvantages of complicated preparation, low quantum yield (QY) and low fluorescence intensity. Herein, we used o-phenylenediamine (OPD) and m-phenylenediamine (MPD) as nitrogen sources and citric acid (CA) as carbon source to prepare P-CDs. Only using simple one-step hydrothermal method under a low experimental temperature of 120 ℃, we successfully obtained highly luminescent P-CDs with absolute QY of 5.3%. The results of XPS and FT-IR revealed that all synthesized P-CDs contained similar functional groups but with different contents. The fluorescence intensity of P-CDs could be effectively regulated by the amount ratio of OPD to MPD. The resulting P-CDs also possessed considerable photostability and salt stability. Notably, the fluorescence color of P-CDs remarkably transformed into green as the pH being in the range of 1-3 or 10-13. The aforementioned unique pH-dependent fluorescence chromic behaviors ensured the potential application in the optical pH sensing.
高荧光紫色荧光碳点pH光学检测
high luminescencepurple-emissive carbon dotsoptical pH sensing
LIU N, TANG M. Toxicity of different types of quantum dots to mammalian cells in vitro: an update review [J]. J. Hazard. Mater., 2020, 399: 122606-1-15. doi: 10.1016/j.jhazmat.2020.122606http://dx.doi.org/10.1016/j.jhazmat.2020.122606
MONDAL T K, MONDAL S, GHORAI U K, et al. White light emitting lanthanide based carbon quantum dots as toxic Cr (Ⅵ) and pH sensor [J]. J. Colloid Interface Sci., 2019, 553: 177-185. doi: 10.1016/j.jcis.2019.06.009http://dx.doi.org/10.1016/j.jcis.2019.06.009
PARK Y, YOO J, LIM B, et al. Improving the functionality of carbon nanodots: doping and surface functionalization [J]. J. Mater. Chem. A, 2016, 4(30): 11582-11603. doi: 10.1039/c6ta04813ghttp://dx.doi.org/10.1039/c6ta04813g
KUMAR V B, PORAT Z, GEDANKEN A. Synthesis of doped/hybrid carbon dots and their biomedical application [J]. Nanomaterials(Basel), 2022, 12(6): 898-1-27. doi: 10.3390/nano12060898http://dx.doi.org/10.3390/nano12060898
HAN Z, LONG Y W, PAN S, et al. Efficient one-pot synthesis of carbon dots as a fluorescent probe for the selective and sensitive detection of rifampicin based on the inner filter effect [J]. Anal. Methods, 2018, 10(33): 4085-4093. doi: 10.1039/c8ay01385chttp://dx.doi.org/10.1039/c8ay01385c
ASHRAFIZADEH M, MOHAMMADINEJAD R, KAILASA S K, et al. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review [J]. Adv. Colloid Interface Sci., 2020, 278: 102123-1-12. doi: 10.1016/j.cis.2020.102123http://dx.doi.org/10.1016/j.cis.2020.102123
DING H, ZHOU X X, WEI J S, et al. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications [J]. Carbon, 2020, 167: 322-344. doi: 10.1016/j.carbon.2020.06.024http://dx.doi.org/10.1016/j.carbon.2020.06.024
CUI F C, YE Y L, PING J F, et al. Carbon dots: current advances in pathogenic bacteria monitoring and prospect applications [J]. Biosens. Bioelectron., 2020, 156: 112085-1-13. doi: 10.1016/j.bios.2020.112085http://dx.doi.org/10.1016/j.bios.2020.112085
DÖRING A, USHAKOVA E, ROGACH A L. Chiral carbon dots: synthesis, optical properties, and emerging applications [J]. Light Sci. Appl., 2022, 11(1): 75-1-23. doi: 10.1038/s41377-022-00764-1http://dx.doi.org/10.1038/s41377-022-00764-1
WALTHER B K, DINU C Z, GULDI D M, et al. Nanobiosensing with graphene and carbon quantum dots: recent advances [J]. Mater. Today, 2020, 39: 23-46. doi: 10.1016/j.mattod.2020.04.008http://dx.doi.org/10.1016/j.mattod.2020.04.008
LI M X, CHEN T, GOODING J J, et al. Review of carbon and graphene quantum dots for sensing [J]. ACS Sens., 2019, 4(7): 1732-1748. doi: 10.1021/acssensors.9b00514http://dx.doi.org/10.1021/acssensors.9b00514
ZHANG T Y, WANG X, WU Z Y, et al. Carbon dots promote the carrier recombination in Poly (9-vinyl carbazole) to enhance its electroluminescence [J]. Appl. Surf. Sci., 2022, 585: 152649-1-9. doi: 10.1016/j.apsusc.2022.152649http://dx.doi.org/10.1016/j.apsusc.2022.152649
NAIK V M, BHOSALE S V, KOLEKAR G B. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots [J]. Anal. Methods, 2022, 14(9): 877-891. doi: 10.1039/d1ay02105bhttp://dx.doi.org/10.1039/d1ay02105b
MOLAEI M J. The optical properties and solar energy conversion applications of carbon quantum dots: a review [J]. Solar Energy, 2020, 196: 549-566. doi: 10.1016/j.solener.2019.12.036http://dx.doi.org/10.1016/j.solener.2019.12.036
TIAN L, LI Z, WANG P, et al. Carbon quantum dots for advanced electrocatalysis [J]. J. Energy Chem., 2021, 55: 279-294. doi: 10.1016/j.jechem.2020.06.057http://dx.doi.org/10.1016/j.jechem.2020.06.057
MANIOUDAKIS J, VICTORIA F, THOMPSON C A, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots [J]. J. Mater. Chem. C, 2019, 7(4): 853-862. doi: 10.1039/c8tc04821ehttp://dx.doi.org/10.1039/c8tc04821e
WANG X, FENG Y Q, DONG P P, et al. A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application [J]. Front. Chem., 2019, 7: 671-1-9. doi: 10.3389/fchem.2019.00671http://dx.doi.org/10.3389/fchem.2019.00671
SHEN C L, LOU Q, LIU K K, et al. Chemiluminescent carbon dots: synthesis, properties, and applications [J]. Nano Today, 2020, 35: 100954-1-23. doi: 10.1016/j.nantod.2020.100954http://dx.doi.org/10.1016/j.nantod.2020.100954
HU S L, TRINCHI A, ATKIN P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light [J]. Angew. Chem. Int. Ed., 2015, 54(10): 2970-2974. doi: 10.1002/anie.201411004http://dx.doi.org/10.1002/anie.201411004
WANG B Y, YU J K, SUI L Z, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal [J]. Adv. Sci. (Weinh.), 2021, 8(1): 2001453-1-8. doi: 10.1002/advs.202001453http://dx.doi.org/10.1002/advs.202001453
HAN Z, NAN D Y, YANG H, et al. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione [J]. Sens. Actuators B Chem., 2019, 298: 126842-1-9. doi: 10.1016/j.snb.2019.126842http://dx.doi.org/10.1016/j.snb.2019.126842
WANG X, ZHANG X Y, GU X Q, et al. A bright and stable violet carbon dot light-emitting diode [J]. Adv. Opt. Mater., 2020, 8(15): 2000239-1-8. doi: 10.1002/adom.202000239http://dx.doi.org/10.1002/adom.202000239
GUO Y M, WANG Z, SHAO H W, et al. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions [J]. Carbon, 2013, 52: 583-589. doi: 10.1016/j.carbon.2012.10.028http://dx.doi.org/10.1016/j.carbon.2012.10.028
CHEN J, TANG Y, WANG H, et al. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH [J]. J. Colloid Interface Sci., 2016, 484: 298-307. doi: 10.1016/j.jcis.2016.09.009http://dx.doi.org/10.1016/j.jcis.2016.09.009
HAN J J, BURGESS K. Fluorescent indicators for intracellular pH [J]. Chem. Rev., 2010, 110(5): 2709-2728. doi: 10.1021/cr900249zhttp://dx.doi.org/10.1021/cr900249z
XING Y, ZHOU Y, FAN L, et al. Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection [J]. Talanta, 2019, 205: 120021-1-7. doi: 10.1016/j.talanta.2019.06.021http://dx.doi.org/10.1016/j.talanta.2019.06.021
WANG N N, YU X Y, DENG T, et al. Two-photon excitation/red emission, ratiometric fluorescent nanoprobe for intracellular pH imaging [J]. Anal. Chem., 2020, 92(1): 583-587. doi: 10.1021/acs.analchem.9b04782http://dx.doi.org/10.1021/acs.analchem.9b04782
JIN X Z, SUN X B, CHEN G, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells [J]. Carbon, 2015, 81: 388-395. doi: 10.1016/j.carbon.2014.09.071http://dx.doi.org/10.1016/j.carbon.2014.09.071
SHANGGUAN J F, HE D G, HE X X, et al. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing [J]. Anal. Chem., 2016, 88(15): 7837-7843. doi: 10.1021/acs.analchem.6b01932http://dx.doi.org/10.1021/acs.analchem.6b01932
WANG X Y, WANG Y S, PAN W, et al. Carbon-dot-based probe designed to detect intracellular pH in fungal cells for building its relationship with intracellular polysaccharide [J]. ACS Sustainable Chem. Eng., 2021, 9(10): 3718-3726. doi: 10.1021/acssuschemeng.0c08160http://dx.doi.org/10.1021/acssuschemeng.0c08160
QIN J, GAO X, CHEN Q Q, et al. pH sensing and bioimaging using green synthesized carbon dots from black fungus [J]. RSC Adv., 2021, 11(50): 31791-31794. doi: 10.1039/d1ra05199ghttp://dx.doi.org/10.1039/d1ra05199g
WANG R X, WANG X F, SUN Y M. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH [J]. Sens. Actuaors B Chem., 2017, 241: 73-79. doi: 10.1016/j.snb.2016.10.043http://dx.doi.org/10.1016/j.snb.2016.10.043
CAYUELA A, SORIANO M L, CARRILLO-CARRIÓN C, et al. Semiconductor and carbon-based fluorescent nanodots: the need for consistency [J]. Chem. Commun., 2016, 52(7): 1311-1326. doi: 10.1039/c5cc07754khttp://dx.doi.org/10.1039/c5cc07754k
TIAN X T, YIN X B. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence [J]. Small, 2019, 15(48): 1901803-1-30. doi: 10.1002/smll.201901803http://dx.doi.org/10.1002/smll.201901803
DE B, KARAK N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice [J]. RSC Adv., 2013, 3(22): 8286-8290. doi: 10.1039/c3ra00088ehttp://dx.doi.org/10.1039/c3ra00088e
GHOSH DASTIDAR D, MUKHERJEE P, GHOSH D, et al. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma [J]. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611: 125781-1-10. doi: 10.1016/j.colsurfa.2020.125781http://dx.doi.org/10.1016/j.colsurfa.2020.125781
YU J K, YONG X, TANG Z Y, et al. Theoretical understanding of structure-property relationships in luminescence of carbon dots [J]. J. Phys. Chem. Lett., 2021, 12(32): 7671-7687. doi: 10.1021/acs.jpclett.1c01856http://dx.doi.org/10.1021/acs.jpclett.1c01856
SHEN L, HOU C J, LI J W, et al. A one-step synthesis of novel high pH-sensitive nitrogen-doped yellow fluorescent carbon dots and their detection application in living cells [J]. Anal. Methods, 2019, 11(44): 5711-5717. doi: 10.1039/c9ay01794ahttp://dx.doi.org/10.1039/c9ay01794a
XU J H, LIANG Q L, LI Z J, et al. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy [J]. Adv. Mater., 2022, 34(17): 2200011-1-8. doi: 10.1002/adma.202200011http://dx.doi.org/10.1002/adma.202200011
XU J Y, SUN L L, GUO X J, et al. pH and solvent induced discoloration behavior of multicolor fluorescent carbon dots [J]. Colloids Surf. A Physicochem. Eng. Asp., 2022, 648: 129261-1-8. doi: 10.1016/j.colsurfa.2022.129261http://dx.doi.org/10.1016/j.colsurfa.2022.129261
LIU X X, YANG C L, ZHENG B Z, et al. Green anhydrous synthesis of hydrophilic carbon dots on large-scale and their application for broad fluorescent pH sensing [J]. Sens. Actuators B Chem., 2018, 255: 572-579. doi: 10.1016/j.snb.2017.08.101http://dx.doi.org/10.1016/j.snb.2017.08.101
MEIERHOFER F, DISSINGER F, WEIGERT F, et al. Citric acid based carbon dots with amine type stabilizers: pH-specific luminescence and quantum yield characteristics [J]. J. Phys. Chem. C, 2020, 124(16): 8894-8904. doi: 10.1021/acs.jpcc.9b11732http://dx.doi.org/10.1021/acs.jpcc.9b11732
TAN A Z, YANG G H, WAN X J. Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2021, 253: 119583-1-9. doi: 10.1016/j.saa.2021.119583http://dx.doi.org/10.1016/j.saa.2021.119583
ZHAO X H, LI J, LIU D N, et al. Self-enhanced carbonized polymer dots for selective visualization of lysosomes and real-time apoptosis monitoring [J]. iScience, 2020, 23(4): 100982-1-24. doi: 10.1016/j.isci.2020.100982http://dx.doi.org/10.1016/j.isci.2020.100982
潘鹏涛, 邹凡雨, 殷俊磊. 碳纳米点荧光探针对有机溶剂中水含量的检测 [J]. 激光与光电子学进展, 2020, 57(23): 231602-1-6. doi: 10.3788/lop57.231602http://dx.doi.org/10.3788/lop57.231602
PAN P T, ZOU F Y, YIN J L. Carbon-nanodots as fluorescent probe for detection of water content in organic solvents [J]. Laser Optoelectron. Progr., 2020, 57(23): 231602-1-6. (in Chinese). doi: 10.3788/lop57.231602http://dx.doi.org/10.3788/lop57.231602
姜杰, 李士浩, 严一楠,等. 氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究 [J]. 发光学报, 2017,38(12): 1567-1574. doi: 10.3788/fgxb20173812.1567http://dx.doi.org/10.3788/fgxb20173812.1567
JIANG J, LI S H, YAN Y N, et al. Preparation of n-doped fluorescent carbon dots with high quantum yield for in-vitro bioimaging [J]. Chin. J. Lumin., 2017, 38(12): 1567-1574. (in Chinese). doi: 10.3788/fgxb20173812.1567http://dx.doi.org/10.3788/fgxb20173812.1567
0
Views
118
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution