浏览全部资源
扫码关注微信
1.西北工业大学 柔性电子研究院, 陕西 西安 710100
2.西北工业大学 教育实验学院, 陕西 西安 710100
3.中国人民解放军军事科学院 国防工程研究院, 河南 洛阳 471023
4.河南省特种防护材料重点实验室, 河南 洛阳 471023
442961927@qq.com
Published:05 February 2023,
Received:08 August 2022,
Revised:25 August 2022,
扫 描 看 全 文
张思敏,巴泽英,李天豪等.光响应金属有机框架研究进展及其应用展望[J].发光学报,2023,44(02):227-239.
ZHANG Simin,BA Zeying,LI Tianhao,et al.Advances and Application Prospect on Photoresponsive Metal-organic Frameworks[J].Chinese Journal of Luminescence,2023,44(02):227-239.
张思敏,巴泽英,李天豪等.光响应金属有机框架研究进展及其应用展望[J].发光学报,2023,44(02):227-239. DOI: 10.37188/CJL.20220289.
ZHANG Simin,BA Zeying,LI Tianhao,et al.Advances and Application Prospect on Photoresponsive Metal-organic Frameworks[J].Chinese Journal of Luminescence,2023,44(02):227-239. DOI: 10.37188/CJL.20220289.
随着智能材料的快速发展,光响应金属有机框架(MOFs)引起了研究者的广泛关注。该类智能材料可在紫外线和可见光的交替照射下,实现MOFs在不同形态之间可逆切换,同时伴随着物理和化学性质的改变,在药物运输、气体分离、光控催化和智能传感等领域具有广阔的发展前景。大部分光响应MOFs由光响应配体和金属离子通过配位作用形成,不同的光响应配体使体系具有独特的性质和应用场景。本文综述了近年来光响应MOFs的研究进展,其中包括光响应MOFs材料的主要类型及其在气体分离、物质运输、动态防伪和光电器件等不同领域中的应用。在此基础上,本文针对光响应MOFs未来发展进行了展望。
With the rapid development of smart materials, photoresponsive metal-organic frameworks (MOFs) has attracted extensive attention of researchers. Under the alternating irradiation of ultraviolet and visible light, photoresponsive MOFs can be reversibly switched between different morphologies, accompanied by changes in physical and chemical properties, which have broad development prospect in the fields of drug transport, gas separation, photo-controlled catalysis and smart sensing. Most of the photoresponsive MOFs are formed by the coordination of photoresponsive ligands and metal ions. Different photoresponsive ligands make the systems have unique properties and application scenarios. In this article, the recent research progress of photoresponsive MOFs is reviewed, including the main types of photoresponsive MOFs and their applications in different fields such as gas separation, material transport, dynamic anti-counterfeiting, and optoelectronic devices. Finally, the future development of photoresponsive MOFs is prospected.
金属有机框架物质运输气体分离动态防伪
metal-organic frameworksmaterial transportgas separationdynamic anti-counterfeiting
ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks [J]. Chem. Rev., 2012, 112(2): 673-674. doi: 10.1021/cr300014xhttp://dx.doi.org/10.1021/cr300014x
ZHU Q L, XU Q. Metal-organic framework composites [J]. Chem. Soc. Rev., 2014, 43(16): 5468-5512. doi: 10.1039/c3cs60472ahttp://dx.doi.org/10.1039/c3cs60472a
WASHBURN W N, COOK E R. Intramolecular nucleophilic catalysis during alkaline hydrolysis of nonenolizable β-keto esters [J]. J. Am. Chem. Soc., 1986, 108(19): 5962-5964. doi: 10.1021/ja00279a048http://dx.doi.org/10.1021/ja00279a048
YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378(6558): 703-706. doi: 10.1038/378703a0http://dx.doi.org/10.1038/378703a0
FURUKAWA H, KO N, GO B, et al. Ultrahigh porosity in metal-organic frameworks [J]. Science, 2010, 329(5990): 424-428. doi: 10.1126/science.1192160http://dx.doi.org/10.1126/science.1192160
LIAO P Q, HUANG N Y, ZHANG W X, et al. Controlling guest conformation for efficient purification of butadiene [J]. Science, 2017, 356(6343): 1193-1196. doi: 10.1126/science.aam7232http://dx.doi.org/10.1126/science.aam7232
PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186-10191. doi: 10.1073/pnas.0602439103http://dx.doi.org/10.1073/pnas.0602439103
HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies [J]. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559. doi: 10.1002/anie.200503778http://dx.doi.org/10.1002/anie.200503778
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. J. Am. Chem. Soc., 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953http://dx.doi.org/10.1021/ja8057953
DUAN J G, JIN W Q, KITAGAWA S. Water-resistant porous coordination polymers for gas separation [J]. Coordin. Chem. Rev., 2017, 332: 48-74. doi: 10.1016/j.ccr.2016.11.004http://dx.doi.org/10.1016/j.ccr.2016.11.004
QIU S L, XUE M, ZHU G S, et al. Metal-organic framework membranes: from synthesis to separation application [J]. Chem. Soc. Rev., 2014, 43(16): 6116-6140. doi: 10.1039/c4cs00159ahttp://dx.doi.org/10.1039/c4cs00159a
CUI Y J, YUE Y F, QIAN G D, et al. Luminescent functional metal-organic frameworks [J]. Chem. Rev., 2012, 112(2): 1126-1162. doi: 10.1021/cr200101dhttp://dx.doi.org/10.1021/cr200101d
CUI Y J, ZHANG J, HE H J, et al. Photonic functional metal-organic frameworks [J]. Chem. Soc. Rev., 2018, 47(15): 5740-5785. doi: 10.1039/c7cs00879ahttp://dx.doi.org/10.1039/c7cs00879a
LATHA G, DEVARAJAN N, SURESH P. Framework copper catalyzed oxidative synthesis of quinazolinones: a benign approach using Cu3(BTC)2 MOF as an efficient and reusable catalyst [J]. ChemistrySelect, 2020, 5(32): 10041-10047. doi: 10.1002/slct.202002661http://dx.doi.org/10.1002/slct.202002661
WANG Y, LIN W X, YU S J, et al. A biocompatible Zr-based metal-organic framework UiO-66-PDC as an oral drug carrier for pH-response release [J]. J. Solid State Chem., 2021, 293: 121805-1-5. doi: 10.1016/j.jssc.2020.121805http://dx.doi.org/10.1016/j.jssc.2020.121805
HORCAJADA P, SERRE C, VALLET-REGÍ M, et al. Metal-organic frameworks as efficient materials for drug delivery [J]. Angew. Chem. Int. Ed., 2006, 45(36): 5974-5978. doi: 10.1002/anie.200601878http://dx.doi.org/10.1002/anie.200601878
COUDERT F X. Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends [J]. Chem. Mater., 2015, 27(6): 1905-1916. doi: 10.1021/acs.chemmater.5b00046http://dx.doi.org/10.1021/acs.chemmater.5b00046
CHEN K F, SINGH R, GUO J N, et al. Electrical regulation of CO2 adsorption in the metal-organic framework MIL-53 [J]. ACS Appl. Mater. Interfaces, 2022, 14(11): 13904-13913. doi: 10.1021/acsami.1c24335http://dx.doi.org/10.1021/acsami.1c24335
LIU W C, PAN Y, XIAO W W, et al. Recent developments on zinc(Ⅱ) metal-organic framework nanocarriers for physiological pH-responsive drug delivery [J]. Med. Chem. Commun., 2019, 10(12): 2038-2051. doi: 10.1039/c9md00400ahttp://dx.doi.org/10.1039/c9md00400a
SUN H D, DU B B, WU Y Z, et al. Interdiscipline between optoelectronic materials and mechanical sensors: recent advances of organic triboluminescent compounds and their applications in sensing [J]. J. Cent. South Univ., 2021, 28(12): 3907-3934. doi: 10.1007/s11771-021-4888-2http://dx.doi.org/10.1007/s11771-021-4888-2
QU D H, WANG Q C, ZHANG Q W, et al. Photoresponsive host-guest functional systems [J]. Chem. Rev., 2015, 115(15): 7543-7588. doi: 10.1021/cr5006342http://dx.doi.org/10.1021/cr5006342
RICE A M, MARTIN C R, GALITSKIY V A, et al. Photophysics modulation in photoswitchable metal⁃organic frameworks [J]. Chem. Rev., 2020, 120(16): 8790-8813. doi: 10.1021/acs.chemrev.9b00350http://dx.doi.org/10.1021/acs.chemrev.9b00350
GÖSTL R, SENF A, HECHT S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution [J]. Chem. Soc. Rev., 2014, 43(6): 1982-1996. doi: 10.1039/c3cs60383khttp://dx.doi.org/10.1039/c3cs60383k
南福春, 薛小矿, 葛介超, 等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021, 42(8): 1155-1171. doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021, 42(8): 1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
YAO X Y, LI T, WANG J, et al. Recent progress in photoswitchable supramolecular self-assembling systems [J]. Adv. Opt. Mater., 2016, 4(9): 1322-1349. doi: 10.1002/adom.201600281http://dx.doi.org/10.1002/adom.201600281
ZHANG X Y, YU T, AU V K M. Photoresponsive metal-organic frameworks: tailorable platforms of photoswitches for advanced functions [J]. ChemNanoMat, 2022, 8(3): e202100486. doi: 10.1002/cnma.202100486http://dx.doi.org/10.1002/cnma.202100486
HUANG Q, WU C. Photoswitching metal organic frameworks development and applications on environmental related topics [J]. Mater. Today Sustain., 2022, 18: 100149. doi: 10.1016/j.mtsust.2022.100149http://dx.doi.org/10.1016/j.mtsust.2022.100149
BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene [J]. Chem. Soc. Rev., 2012, 41(5): 1809-1825. doi: 10.1039/c1cs15179ghttp://dx.doi.org/10.1039/c1cs15179g
IRIE M, FUKAMINATO T, MATSUDA K, et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators [J]. Chem. Rev., 2014, 114(24): 12174-12277. doi: 10.1021/cr500249phttp://dx.doi.org/10.1021/cr500249p
DRYZA V, BIESKE E J. Electron injection and energy-transfer properties of spiropyran-cyclodextrin complexes coated onto metal oxide nanoparticles: toward photochromic light harvesting [J]. J. Phys. Chem. C, 2015, 119(25): 14076-14084. doi: 10.1021/acs.jpcc.5b05032http://dx.doi.org/10.1021/acs.jpcc.5b05032
HU C H, MA N N, LI F, et al. Cucurbit[8]uril-based giant supramolecular vesicles: highly stable, versatile carriers for photoresponsive and targeted drug delivery [J]. ACS Appl. Mater. Interfaces, 2018, 10(5): 4603-4613. doi: 10.1021/acsami.8b00297http://dx.doi.org/10.1021/acsami.8b00297
KANJ A B, MÜLLER K, HEINKE L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups [J]. Macromol. Rapid Commun., 2018, 39(1): 1700239-1-14. doi: 10.1002/marc.201700239http://dx.doi.org/10.1002/marc.201700239
KAWATA S, KAWATA Y. Three-dimensional optical data storage using photochromic materials [J]. Chem. Rev., 2000, 100(5): 1777-1788. doi: 10.1021/cr980073phttp://dx.doi.org/10.1021/cr980073p
TANG Y Y, ZENG Y L, XIONG R G. Contactless manipulation of write-read-erase data storage in diarylethene ferroelectric crystals [J]. J. Am. Chem. Soc., 2022, 144(19): 8633-8640. doi: 10.1021/jacs.2c01069http://dx.doi.org/10.1021/jacs.2c01069
OU D P, YU T, YANG Z Y, et al. Combined aggregation induced emission(AIE), photochromism and photoresponsive wettability in simple dichloro-substituted triphenylethylene derivatives [J]. Chem. Sci., 2016, 7(8): 5302-5306. doi: 10.1039/c6sc01205ahttp://dx.doi.org/10.1039/c6sc01205a
WANG L Y, YU T, XIE Z L, et al. Design, synthesis and photochromism studies of thienyl containing triarylethylene derivatives and their applications in real-time photoresponsive surfaces [J]. J. Mater. Chem. C, 2018, 6(32): 8832-8838. doi: 10.1039/c8tc02698jhttp://dx.doi.org/10.1039/c8tc02698j
ZHANG X Y, YU T, HUANG C, et al. Switching excitons between the emissive and photochromic pathways in the triphenylethylene system [J]. J. Mater. Chem. C, 2021, 9(34): 11126-11131. doi: 10.1039/d1tc02393dhttp://dx.doi.org/10.1039/d1tc02393d
ZHANG X Y, LIU F K, DU B B, et al. Construction of photoresponsive 3D structures based on triphenylethylene photochromic building blocks [J]. Research, 2022, 2022: 9834140. doi: 10.34133/2022/9834140http://dx.doi.org/10.34133/2022/9834140
HUANG C, HUANG R J, ZHANG S M, et al. Recent development of photodeformable crystals: from materials to mechanisms [J]. Research, 2021, 2021: 9816535. doi: 10.34133/2021/9816535http://dx.doi.org/10.34133/2021/9816535
FAN C B, GONG L L, HUANG L, et al. Significant enhancement of C2H2/C2H4 separation by a photochromic diarylethene unit: a temperature- and light-responsive separation switch [J]. Angew. Chem. Int. Ed., 2017, 56(27): 7900-7906.
JIANG Y, TAN P, QI S C, et al. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture [J]. Angew. Chem. Int. Ed., 2019, 58(20): 6600-6604. doi: 10.1002/anie.201900141http://dx.doi.org/10.1002/anie.201900141
HAZRA A, BONAKALA S, ADALIKWU S A, et al. Fluorocarbon-functionalized superhydrophobic metal-organic framework: enhanced CO2 uptake via photoinduced postsynthetic modification [J]. Inorg. Chem., 2021, 60(6): 3823-3833. doi: 10.1021/acs.inorgchem.0c03575http://dx.doi.org/10.1021/acs.inorgchem.0c03575
MABROUK M T, ZHANG H J, ZIDAN A A, et al. Cross-linked histone as a nanocarrier for gut delivery of hydrophobic cargos [J]. ACS Appl. Mater. Interfaces, 2021, 13(23): 26712-26720. doi: 10.1021/acsami.1c04134http://dx.doi.org/10.1021/acsami.1c04134
CZARNOBAJ K, PROKOPOWICZ M, GREBER K. Use of materials based on polymeric silica as bone-targeted drug delivery systems for metronidazole [J]. Int. J. Mol. Sci., 2019, 20(6): 1311-1-12. doi: 10.3390/ijms20061311http://dx.doi.org/10.3390/ijms20061311
MENG X S, GUI B, YUAN D Q, et al. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release [J]. Sci. Adv., 2016, 2(8): e1600480-1-6. doi: 10.1126/sciadv.1600480http://dx.doi.org/10.1126/sciadv.1600480
OU R W, ZHANG H C, ZHAO C, et al. Photoresponsive styrylpyrene-modified MOFs for gated loading and release of cargo molecules [J]. Chem. Mater., 2020, 32(24): 10621-10627. doi: 10.1021/acs.chemmater.0c03726http://dx.doi.org/10.1021/acs.chemmater.0c03726
YAN S Q, ZENG X M, WANG Y, et al. Biomineralization of bacteria by a metal-organic framework for therapeutic delivery [J]. Adv. Healthc. Mater., 2020, 9(12): 2000046. doi: 10.1002/adhm.202000046http://dx.doi.org/10.1002/adhm.202000046
郑贤, 杨朝龙. 纯有机室温磷光材料研究现状与策略 [J]. 发光学报, 2022, 43(7): 1027-1039. doi: 10.37188/cjl.20220151http://dx.doi.org/10.37188/cjl.20220151
ZHENG X, YANG C L. Research status and strategy of pure organic room temperature phosphorescent materials [J]. Chin. J. Lumin., 2021, 43(7): 1027-1039. (in Chinese). doi: 10.37188/cjl.20220151http://dx.doi.org/10.37188/cjl.20220151
LI Z Q, WANG G N, YE Y X, et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting [J]. Angew. Chem. Int. Ed., 2019, 58(50): 18025-18031. doi: 10.1002/anie.201910467http://dx.doi.org/10.1002/anie.201910467
YOU Z X, WANG C, XIAN Y, et al. Integrated photoresponsive alkaline earth metal coordination networks: synthesis, topology, photochromism and photoluminescence investigation [J]. Chemistry, 2021, 27(37): 9605-9619. doi: 10.1002/chem.202100588http://dx.doi.org/10.1002/chem.202100588
QIU X T, SHI Q, ZHANG D Q, et al. A multi-responsive Cd-viologen complex: photochromism, photomodulated fluorescence, and luminescent sensing [J]. ChemistrySelect, 2018, 3(23): 6611-6616. doi: 10.1002/slct.201801005http://dx.doi.org/10.1002/slct.201801005
MA Y J, FANG X Y, XIAO G W, et al. Dynamic manipulating space-resolved persistent luminescence in core-shell MOFs heterostructures via reversible photochromism [J]. Angew. Chem. Int. Ed., 2022, 61(2): e202114100. doi: 10.1002/ange.202114100http://dx.doi.org/10.1002/ange.202114100
何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展 [J]. 发光学报, 2021, 42(11): 1722-1738. doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
HE R F, ZHOU F F, QU J L, et al. Research progress of metal-organic frameworks in organic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(11): 1722-1738. (in Chinese). doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
TSAI Y T, HUANG G T, ZHAO J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2-based hydrogen storage materials [J]. AIChE J., 2021, 67(8): e17302. doi: 10.1002/aic.17302http://dx.doi.org/10.1002/aic.17302
BUTOVA V V, BURACHEVSKAYA O A, PODSHIBYAKIN V A, et al. Photoswitchable zirconium MOF for light-driven hydrogen storage [J]. Polymers, 2021, 13(22): 4052-1-11. doi: 10.3390/polym13224052http://dx.doi.org/10.3390/polym13224052
KANJ A B, CHANDRESH A, GERWIEN A, et al. Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on-off ratio [J]. Chem. Sci., 2020, 11(5): 1404-1410. doi: 10.1039/c9sc04926fhttp://dx.doi.org/10.1039/c9sc04926f
MARTIN C R, LEITH G A, KITTIKHUNNATHAM P, et al. Heterometallic actinide-containing photoresponsive metal-organic frameworks: dynamic and static tuning of electronic properties [J]. Angew. Chem. Int. Ed., 2021, 60(15): 8072-8080. doi: 10.1002/anie.202016826http://dx.doi.org/10.1002/anie.202016826
LI C, ZHANG L L, CHEN L Q, et al. Recent development and applications of electrical conductive MOFs [J]. Nanoscale, 2021, 13(2): 485-509.|. doi: 10.1039/d0nr06396ghttp://dx.doi.org/10.1039/d0nr06396g
0
Views
305
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution