浏览全部资源
扫码关注微信
浙江大学 材料科学与工程学院, 浙江 杭州 310027
Published:05 December 2022,
Received:10 July 2022,
Revised:24 July 2022,
扫 描 看 全 文
王长建,乔旭升,樊先平.蓝光LED激发Cr3+掺杂宽带近红外荧光粉研究进展[J].发光学报,2022,43(12):1855-1870.
WANG Chang-jian,QIAO Xu-sheng,FAN Xian-ping.Research Progress on Blue LED Excited Cr3+ Doped Phosphors with Broad-band Near-infrared Luminescence[J].Chinese Journal of Luminescence,2022,43(12):1855-1870.
王长建,乔旭升,樊先平.蓝光LED激发Cr3+掺杂宽带近红外荧光粉研究进展[J].发光学报,2022,43(12):1855-1870. DOI: 10.37188/CJL.20220271.
WANG Chang-jian,QIAO Xu-sheng,FAN Xian-ping.Research Progress on Blue LED Excited Cr3+ Doped Phosphors with Broad-band Near-infrared Luminescence[J].Chinese Journal of Luminescence,2022,43(12):1855-1870. DOI: 10.37188/CJL.20220271.
宽带近红外光源可广泛应用于非侵入式探测、军事侦查、食品检测、医疗成像等领域。采用近红外(NIR)荧光粉和蓝光LED芯片组合成荧光转换发光二级管,作为NIR光源,具有技术成熟、结构紧凑、成本低等优点。本文综述了蓝光LED激发 Cr
3+
掺杂宽带近红外荧光粉研究进展。首先,回顾了Cr
3+
发光的晶体场理论,并根据材料体系梳理了近来报道的 Cr
3+
掺杂近红外荧光粉;其次,鉴于近红外荧光粉在光谱范围、耐温性、输出功率、电光转化效率等方面依旧存在不足,总结了在机理上优化光谱学性能、改善热猝灭性能和电光转换效率的研究工作;最后,较全面地总结了Cr
3+
掺杂NIR荧光粉的器件化应用研究进展。
Broad-spectrum near-infrared light sources have a wide range of applications in non-invasive detection, military surveillance, food inspection, medical imaging,
etc
. In practical applications, a near-infrared(NIR) phosphor and a blue LED chip are used to form a fluorescent conversion light-emitting diode. As a NIR light source, it has the advantages of mature technology, compact structure and low cost. In this paper, the research progress of Cr
3+
doped near-infrared phosphors excited by blue LEDs is reviewed. First, the crystal field theory of Cr
3+
luminescence is briefly introduced, and the recently reported Cr
3+
doped near-infrared phosphors are sorted out according to the material system. Secondly, in view of the shortcomings of near-infrared phosphors in terms of spectral range, temperature resistance, output power, electro-optical conversion efficiency,
etc
., the existing research work from related mechanisms to optimize spectral performance, improve thermal quenching performance and electro-optical conversion efficiency is summarized. Finally, the researches on the device application of NIR light source are comprehensively summarized and compared.
Cr3+离子近红外荧光粉蓝光激发发光量子效率电光转化效率
Cr3+ ionnear-infrared phosphorblue light excitationluminescence quantum efficiencyelectro-optical conversion efficiency
ZHAO J Y, ZHONG D, ZHOU S B. NIR-Ⅰ- to-NIR-Ⅱ fluorescent nanomaterials for biomedical imaging and cancer therapy [J]. J. Mater. Chem. B, 2018, 6(3): 349-365.
FILIPPO R, TARALLI E, RAJTERI M. LEDs: sources and intrinsically bandwidth-limited detectors [J]. Sensors, 2017, 17(7): 1673-1-12.
ZHAO X F, TAN Z K. Large-area near-infrared perovskite light-emitting diodes [J]. Nat. Photonics, 2020, 14(4): 215-218.
LY K Y, CHEN-CHENG R W, LIN H W, et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance [J]. Nat. Photonics, 2017, 11(1): 63-68.
XIAO H, ZHANG J N, ZHANG L L, et al. Cr3+ activated garnet phosphor with efficient blue to far-red conversion for pc-LED [J]. Adv. Opt. Mater., 2021, 9(20): 2101134-1-7.
FANG L M, HAO Z D, ZHANG L L, et al. Cr3+-doped broadband near infrared diopside phosphor for NIR pc-LED [J]. Mater. Res. Bull., 2022, 149: 111725.
HE S, ZHANG L L, WU H, et al. Efficient super broadband NIR Ca2LuZr2Al3O12∶Cr3+, Yb3+ garnet phosphor for pc-LED light source toward NIR spectroscopy applications [J]. Adv. Opt. Mater., 2020, 8(6): 1901684-1-7.
SUN Z S, NING Q X, ZHOU W Y, et al. Structural and spectroscopic investigation of an efficient and broadband NIR phosphor InBO3∶Cr3+ and its application in NIR pc-LEDs [J]. Ceram. Int., 2021, 47(10): 13598-13603. doi: 10.1016/j.ceramint.2021.01.218http://dx.doi.org/10.1016/j.ceramint.2021.01.218
张亮亮, 张家骅, 郝振东, 等. Cr3+掺杂的宽带近红外荧光粉及其研究进展 [J]. 发光学报, 2019, 40(12): 1449-1459. doi: 10.3788/fgxb20194012.1449http://dx.doi.org/10.3788/fgxb20194012.1449
ZHANG L L, ZHANG J H, HAO Z D, et al. Recent progress on Cr3+ doped broad band NIR phosphors [J]. Chin. J. Lumin., 2019, 40(12): 1449-1459. (in Chinese). doi: 10.3788/fgxb20194012.1449http://dx.doi.org/10.3788/fgxb20194012.1449
何文, 曹锦, 刘洁, 等. 近红外发射荧光材料的研究 [J]. 上海师范大学学报(自然科学版), 2019, 48(6): 605-616.
HE W, CAO J, LIU J, et al. Research on near-infrared emitting fluorescent materials [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2019, 48(6): 605-616. (in Chinese)
王长建. Cr3+/Cr4+掺杂氟氧化物玻璃陶瓷的荧光温度传感性能研究 [D]. 杭州: 浙江大学, 2018: 11-24.
WANG C J. The Fluorescence Temperature Sensing Properties of Cr3+/Cr4+ Doped Oxyfluoride Glass⁃ceramics [D]. Hangzhou: Zhejiang University, 2018: 11-24. (in Chinese)
KETTLE S F A. Crystal field theory of transition metal complexes [M]. KETTLE S F A. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996: 121-155.
BURNS R G. Outline of Crystal Field Theory [M]. Cambridge: Cambridge University Press, 1993: 7-43.
SUGANO S. Multiplets of Transition⁃metal Ions in Crystals [M]. New York: Academic, 1970: 179-212.
HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids [M]. New York: Oxford University Press, 2006: 410-430.
TANABE Y, SUGANO S. On the absorption spectra of complex ions Ⅱ [J]. J. Phys. Soc. Japan, 1954, 9(5): 766-779.
TANABE Y, SUGANO S. On the absorption spectra of complex ions, Ⅲ the calculation of the crystalline field strength [J]. J. Phys. Soc. Japan, 1956, 11(8): 864-877.
CASALBONI M, CIAFARDONE V, GIULI G, et al. An optical study of silicate glass containing Cr3+ and Cr6+ ions [J]. J. Phys.: Condens. Matter, 1996, 8(46): 9059-9069.
SHIONOYA S, YEN W M. Phosphor Handbook [J]. Boca Raton: CRC Press, 1999: 108-109.
BRIK M G, SRIVASTAVA A M. Critical review-a review of the electronic structure and optical properties of ions with d3 electron configuration (V2+, Cr3+, Mn4+, Fe5+) and main related misconceptions [J]. ECS J. Solid State Sci. Technol., 2018, 7(1): R3079-R3085.
ADACHI S. Racah parameter ratio C/B for the 3d3-configuration ions like Mn4+ and Cr3+ in the Tanabe-Sugano diagram [J]. ECS J. Solid State Sci. Technol., 2020, 9(6): 066003.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3067-R3077.
ADACHI S. Photoluminescence spectroscopy and crystal-field parameters of Cr3+ ion in red and deep red-emitting phosphors [J]. ECS J. Solid State Sci. Technol., 2019, 8(12): R164-R168.
DEREŃ P J, MALINOWSKI M, STREK W. Site selection spectroscopy of Cr3+ in MgAl2O4 green spinel [J]. J. Lumin., 1996, 68(2-4): 91-103.
LAI J A, QIU J B, WANG Q, et al. Disentangling site occupancy, cation regulation, and oxidation state regulation of the broadband near infrared emission in a chromium-doped SrGa4O7 phosphor [J]. Inorg. Chem. Front., 2020, 7(12): 2313-2321. doi: 10.1039/d0qi00332hhttp://dx.doi.org/10.1039/d0qi00332h
YU D C, ZHOU Y S, MA C S, et al. Non-rare-earth Na3AlF6∶Cr3+ phosphors for far-red light-emitting diodes [J]. ACS Appl. Electron. Mater., 2019, 1(11): 2325-2333.
LEE C, BAO Z, FANG M H, et al. Chromium(Ⅲ)-doped fluoride phosphors with broadband infrared emission for light-emitting diodes [J]. Inorg. Chem., 2020, 59(1): 376-385.
WU Z X, HAN X X, ZHOU Y Y, et al. Efficient broadband near-infrared luminescence of Cr3+ doped fluoride K2NaInF6 and its NIR-LED application toward veins imaging [J]. Chem. Eng. J., 2022, 427: 131740.
LIU Y, HE S, WU D, et al. Broadband NIR garnet phosphors with improved thermal stability via energy transfer [J]. ACS Appl. Electron. Mater., 2022, 4(2): 643-650.
XU X X, SHAO Q Y, YAO L Q, et al. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications [J]. Chem. Eng. J., 2020, 383: 123108-1-8.
WANG Y P, ZHANG H S, LIN L T, et al. Role of intrinsic defects on the persistent luminescence of pristine and Mn doped ZnGa2O4 [J]. J. Appl. Phys., 2019, 125(9): 095701-1-8.
裴志鹏, 陆遥, 吴恒, 等. A2B'B″O6型双钙钛矿氧化物的研究进展 [J]. 硅酸盐学报, 2019, 47(4): 526-537.
PEI Z P, LU Y, WU H, et al. Advances on A2B'B″O6 type double perovskite oxides [J]. J. Chin. Ceram. Soc., 2019, 47(4): 526-537. (in Chinese)
YIN H, XIAN Y M, ZHANG Y L, et al. Structurally stabilizing and environment friendly triggers: double-metallic lead-free perovskites [J]. Solar RRL, 2019, 3(9): 1900148.
LU L, PAN X, LUO J H, et al. Recent advances and optoelectronic applications of lead-free halide double perovskites [J]. Chem.–A Eur. J., 2020, 26(71): 16975-16984.
SHAO Q Y, DING H, YAO L Q, et al. Photoluminescence properties of a ScBO3∶Cr3+ phosphor and its applications for broadband near-infrared LEDs [J]. RSC Adv., 2018, 8(22): 12035-12042.
HUANG D C, ZHU H M, DENG Z H, et al. A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(1): 164-172.
YAO L Q, SHAO Q Y, HAN S Y, et al. Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+ codoped LiScP2O7∶Cr3+ [J]. Chem. Mater., 2020, 32(6): 2430-2439.
CHEN L, CHEN X L, LIU F Y, et al. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12∶Ce3+ luminescence by doping Gd3+ for warm white LEDs [J]. Sci. Rep., 2015, 5(1): 11514-1-17.
周丹丹. 稀土或铬离子掺杂石榴石发光材料的制备与性能研究 [D]. 北京: 北京科技大学, 2021: 17-20.
ZHOU D D. Study on Synthesis, Structure and Luminescence Properties of Rare Earth or Chromium Ions Doped Garnet⁃based Phosphors [D]. Beijing: University of Science and Technology Beijing, 2021: 17-20. (in Chinese)
姜雁博. ZnGa2O4电子结构模拟及其光催化和光学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 4-11.
JIANG Y B. Simulation of Electronic Structure and Research on Photocatalytic and Optical Properties of Zinc Gallium Oxide [D]. Harbin: Harbin Institute of Technology, 2020: 4-11. (in Chinese)
孙琦. 双钙钛矿型氧化物的制备及其电化学析氢性能评价 [D]. 广州: 暨南大学, 2020: 15-17.
SUN Q. Optimized Electrochemical Performance of Double Perovskite Oxides for Hydrogen Evolution Reaction [D]. Guangzhou: Jinan University, 2020: 15-17. (in Chinese)
MAIGNAN A, MARTIN C, PELLOQUIN D, et al. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the “112” structure [J]. J. Solid State Chem., 1999, 142(2): 247-260.
SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells [J]. Nat. Mater., 2015, 14(2): 205-209.
PATWE S J, ACHARY S N, MATHEWS M D, et al. Synthesis, phase transition and thermal expansion studies on M2MgWO6(M=Ba2+ and Sr2+) double perovskites [J]. J. Alloys Compds., 2005, 390(1-2): 100-105.
MEYER E, MUTUKWA D, ZINGWE N, et al. Lead-free halide double perovskites: a review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites [J]. Metals, 2018, 8(9): 667-1-16.
CHU L, AHMAD W, LIU W, et al. Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications [J]. Nano⁃Micro Lett., 2019, 11(1): 16-1-18.
BALLMAN A A. A new series of synthetic borates isostructural with the carbonate mineral huntite [J]. Am. Mineral., 1962, 47(11-12): 1380-1383.
AKHMETOV S F, AKHMETOVA G L, KOVALENKO V S, et al. Thermal decomposition of rare earth-aluminium borates [J]. Kristallografiya, 1978, 23: 198-199.
WANG G F. Structure, growth, nonlinear optics, and laser properties of RX3(BO3)4 (R = Y, Gd, La; X = Al, Sc) [M]. WU X T, CHEN L. Structure⁃property Relationships in Non⁃linear Optical Crystals. Berlin: Springer, 2012: 105-119.
LIU H, LI J, FANG S H, et al. Growth of YAl3(BO3)4 crystals with tungstate based flux [J]. Mater. Res. Innov., 2011, 15(2): 102-106.
KAMINSKII A A. Laser crystals and ceramics: recent advances [J]. Laser Photonics Rev., 2007, 1(2): 93-177. doi: 10.1002/lpor.200710008http://dx.doi.org/10.1002/lpor.200710008
DEMIRBAS U. Cr∶colquiriite lasers: current status and challenges for further progress [J]. Prog. Quantum Electron., 2019, 68: 100227-1-53.
FONSECA R J MDA, TAVARES JR A D, SILVA P S, et al. Investigation of Cr3+ ions in Cs2NaGaF6 single crystals by optical spectroscopy [J]. Solid State Commun., 1999, 110(9): 519-524.
SOSMAN L P, TAVARES JR A D, FONSECA R J MDA, et al. Study of optical properties of Cr3+ ions in Cs2NaAlF6 single crystals [J]. Solid State Commun., 2000, 114(12): 661-665.
SILVA M A F MDA, BARTHEM R B, SOSMAN L P. Investigation of luminescence and optical absorption of K2LiAlF6∶Cr3+ single crystals [J]. J. Solid State Chem., 2006, 179(12): 3718-3723.
HERNÁNDEZ I, RODRÍGUEZ F, TRESSAUD A. Optical properties of the (CrF6)3- complex in A2BMF6∶Cr3+ elpasolite crystals: variation with M—F bond distance and hydrostatic pressure [J]. Inorg. Chem., 2008, 47(22): 10288-10298.
余冬燕, 吴幸雅, 闫共芹, 等. 稀土掺杂磷酸盐荧光粉的研究进展 [J]. 材料导报, 2020, 34(S2): 1041-1047.
YU D Y, WU X Y, YAN G Q, et al. Recent advances of rare-earth doped phosphate phosphors [J]. Mater. Rep., 2020, 34(S2): 1041-1047. (in Chinese)
FANG M H, CHEN K C, MAJEWSKA N, et al. Hidden structural evolution and bond valence control in near-infrared phosphors for light-emitting diodes [J]. ACS Energy Lett., 2021, 6(1): 109-114.
CHENG J E, WANG Z J, LI Z L, et al. Design and control luminescence of Li2ZnGe3O8∶Cr3+ in NIR Ⅰ region by cationic regulation [J]. Optik, 2019, 180: 713-723.
YOU L, TIAN R D, ZHOU T L, et al. Broadband near-infrared phosphor BaMgAl10O17∶Cr3+ realized by crystallographic site engineering [J]. Chem. Eng. J., 2021, 417: 129224-1-8.
LAI J A, SHEN W H, QIU J B, et al. Broadband near-infrared emission enhancement in K2Ga2Sn6O16∶Cr3+ phosphor by electron-lattice coupling regulation [J]. J. Am. Ceram. Soc., 2020, 103(9): 5067-5075.
张景荣, 黄得财, 黄聪聪, 等. In2BP3O12∶Cr3+宽带近红外荧光粉的发光性能及应用研究 [J]. 化学学报, 2022, 80(4): 453-459.
ZHANG J R, HUANG D C, HUANG C C, et al. Investigation on the luminescent property and application of In2BP3O12∶Cr3+ broadband near-infrared phosphor [J]. Acta Chim. Sinica, 2022, 80(4): 453-459. (in Chinese)
方立民, 郝振东, 张亮亮, 等. δ-Sc4Zr3O12∶Cr3+宽带近红外荧光粉发光性能的研究 [J]. 激光与光电子学进展, 2021, 58(15): 1516008-1-8. doi: 10.3788/lop202158.1516008http://dx.doi.org/10.3788/lop202158.1516008
FANG L M, HAO Z D, ZHANG L L, et al. Luminescence properties of broadband near-infrared δ-Sc4Zr3O12∶Cr3+ phosphors [J]. Laser Optoelectron. Prog., 2021, 58(15): 1516008-1-8. (in Chinese). doi: 10.3788/lop202158.1516008http://dx.doi.org/10.3788/lop202158.1516008
蔡吉泽, 庞然, 于湛, 等. 近红外发光材料Mg2SnO4∶Cr3+的制备及发光性质 [J]. 发光学报, 2019, 40(12): 1505-1513.
CAI J Z, PANG R, YU Z, et al. Preparation and luminescence properties of near infrared luminescent material Mg2SnO4∶Cr3+ [J]. Chin. J. Lumin., 2019, 40(12): 1505-1513. (in Chinese)
SU Y, YUAN L F, LIU H, et al. Multi-site occupation of Cr3+ toward developing broadband near-infrared phosphors [J]. Ceram. Int., 2021, 47(16): 23558-23563.
LIU S Q, CAI H, ZHANG S Y, et al. Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application [J]. Mater. Chem. Front., 2021, 5(10): 3841-3849.
PAYNE S A, CHASE L L, WILKE G D. Optical spectroscopy of the new laser materials, LiSrAlF6∶Cr3+ and LiCaAlF6∶Cr3+ [J]. J. Lumin., 1989, 44(3): 167-176.
SKRUODIENE M, KATELNIKOVAS A, VASYLECHKO L, et al. Tb3+ to Cr3+ energy transfer in a co-doped Y3Al5O12 host [J]. J. Lumin., 2019, 208: 327-333.
WU J P, ZHUANG W D, LIU R H, et al. Broadband near-infrared luminescence and energy transfer of Cr3+, Ce3+ co-doped Ca2LuHf2Al3O12 phosphors [J]. J. Rare Earths, 2021, 39(3): 269-276.
ZHOU Y P, LI X J, SETO T, et al. A high efficiency trivalent chromium-doped near-infrared-emitting phosphor and its NIR spectroscopy application [J]. ACS Sustain. Chem. Eng., 2021, 9(8): 3145-3156.
HE F Q, SONG E H, ZHOU Y Y, et al. A general ammonium salt assisted synthesis strategy for Cr3+-doped hexafluorides with highly efficient near infrared emissions [J]. Adv. Funct. Mater., 2021, 31(36): 2103743-1-11.
ZHAO F Y, CAI H, SONG Z, et al. Structural confinement for Cr3+ activators toward efficient near-infrared phosphors with suppressed concentration quenching [J]. Chem. Mater., 2021, 33(10): 3621-3630.
徐士杰. 黄-里斯因子及其在阐释固体有关光学性质的关键作用 [J]. 物理学报, 2019, 68(16): 166301-1-11.
XU S J. Huang-Rhys factor and its key role in the interpretation of some optical properties of solids [J]. Acta Phys. Sinica, 2019, 68(16): 166301-1-11. (in Chinese)
许少鸿. 固体发光 [M]. 北京: 清华大学出版社, 2011: 49-57.
XU S H. Solid Luminescence Handout [M]. Beijing: Tsinghua University, 2011: 49-57. (in Chinese)
TORCHIA G A, MATOS O M, VAVELIUK P, et al. Electron-lattice coupling in congruent co-doped LiNbO3∶Cr3+∶ZnO crystal [J]. J. Phys.: Condens. Matter, 2001, 13(30): 6577-6583.
BLASSE G, GRABMAIER B C. Nonradiative transitions [M]. BLASSE G, GRABMAIER B C. Luminescent Materials. Berlin: Springer, 1994: 71-90.
DENG T T, SONG E H, ZHOU Y Y, et al. Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6∶Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation [J]. J. Mater. Chem. C, 2017, 5(47): 12422-12429.
GEORGE N C, PELL A J, DANTELLE G, et al. Local environments of dilute activator ions in the solid-state lighting phosphor Y3-xCexAl5O12 [J]. Chem. Mater., 2013, 25(20): 3979-3995. doi: 10.1021/cm401598nhttp://dx.doi.org/10.1021/cm401598n
DENAULT K A, BRGOCH J, KLOß S D, et al. Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts [J]. ACS Appl. Mater. Interfaces, 2015, 7(13): 7264-7272.
KART S O, CAGIN T. Elastic properties of Ni2MnGa from first-principles calculations [J]. J. Alloys Compds., 2010, 508(1): 177-183.
QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence [J]. J. Rare Earths, 2019, 37(6): 565-572. doi: 10.1016/j.jre.2018.11.001http://dx.doi.org/10.1016/j.jre.2018.11.001
HUANG D C, LIANG S S, CHEN D J, et al. An efficient garnet-structured Na3Al2Li3F12∶Cr3+ phosphor with excellent photoluminescence thermal stability for near-infrared LEDs [J]. Chem. Eng. J., 2021, 426: 131332.
YAO L Q, SHAO Q Y, XU X X, et al. Broadband emission of single-phase Ca3Sc2Si3O12∶Cr3+/Ln3+ (Ln = Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output [J]. Ceram. Int., 2019, 45(11): 14249-14255.
ZHANG L L, WANG D D, HAO Z D, et al. Cr3+-doped broadband nir garnet phosphor with enhanced luminescence and its application in NIR spectroscopy [J]. Adv. Opt. Mater., 2019, 7(12): 1900185-1-8.
LIU C Y, XIA Z G, MOLOKEEV M S, et al. Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12∶Cr3+ by codoping Bi3+ [J]. J. Am. Ceram. Soc., 2015, 98(6): 1870-1876.
LIU T Y, CAI H, MAO N, et al. Efficient near-infrared pyroxene phosphor LiInGe2O6∶Cr3+ for NIR spectroscopy application [J]. J. Am. Ceram. Soc., 2021, 104(9): 4577-4584.
BHATT M D, LEE J S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells [J]. J. Mater. Chem. A, 2015, 3(20): 10632-10659.
JIA Z W, YUAN C X, LIU Y F, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources [J]. Light: Sci. Appl., 2020, 9(1): 86-1-9.
HU B T, SUN K A, ZHUANG Z W, et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties [J]. Adv. Mater., 2022, 34(16): 2107721-1-9.
PAN X, MEI L F, ZHUANG Y X, et al. Anti-defect engineering toward high luminescent efficiency in whitlockite phosphors [J]. Chem. Eng. J., 2022, 434: 134652-1-33.
BASORE E T, XIAO W G, LIU X F, et al. Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency [J]. Adv. Opt. Mater., 2020, 8(12): 2000296-1-5.
ZHANG L L, ZHANG S, HAO Z D, et al. A high efficiency broad-band near-infrared Ca2LuZr2Al3O12∶Cr3+ garnet phosphor for blue LED chips [J]. J. Mater. Chem. C, 2018, 6(18): 4967-4976.
RAJENDRAN V, FANG M H, DE GUZMAN G N, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications [J]. ACS Energy Lett., 2018, 3(11): 2679-2684.
HUANG W T, CHENG C L, BAO Z, et al. Broadband Cr3+, Sn4+-doped oxide nanophosphors for infrared mini light-emitting diodes [J]. Angew. Chem. Int. Ed., 2019, 58(7): 2069-2072.
MIAO S H, LIANG Y J, ZHANG Y, et al. Spectrally tunable and thermally stable near-infrared luminescence in Na3Sc2⁃
(PO4)3∶Cr3+ phosphors by Ga3+ co-doping for light-emitting diodes [J]. J. Mater. Chem. C, 2022, 10(3): 994-1002.
LIU G C, MOLOKEEV M S, XIA Z G. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability [J]. Chem. Mater., 2022, 34(3): 1376-1384.
0
Views
570
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution