浏览全部资源
扫码关注微信
1.北京大学 物理学院, 人工微结构和介观物理国家重点实验室, 北京 100871
2.泰山学院 物理与电子工程学院, 山东 泰安 271000
Published:05 January 2023,
Received:25 June 2022,
Revised:15 July 2022,
扫 描 看 全 文
唐振宇,郭浩清,肖静等.OLED电子传输材料研究进展[J].发光学报,2023,44(01):26-36.
TANG Zhenyu,GUO Haoqing,XIAO Jing,et al.Recent Advances on Electronic Transport Materials in OLEDs[J].Chinese Journal of Luminescence,2023,44(01):26-36.
唐振宇,郭浩清,肖静等.OLED电子传输材料研究进展[J].发光学报,2023,44(01):26-36. DOI: 10.37188/CJL.20220253.
TANG Zhenyu,GUO Haoqing,XIAO Jing,et al.Recent Advances on Electronic Transport Materials in OLEDs[J].Chinese Journal of Luminescence,2023,44(01):26-36. DOI: 10.37188/CJL.20220253.
有机电致发光(OLED)是目前最有竞争力的显示技术,市场占有量逐年攀升。高效、稳定的OLED,特别是深蓝光器件,性能仍需提升,其关键问题是高性能的电子传输材料的研发。这是由于有机分子难以获得较高电子迁移率,器件中的复合区域通常靠近电子传输层一侧,这就要求电子传输材料需要具有较高三线态能级来限域激子,尤其是高能量的蓝光激子。而高三线态(弱共轭)和高迁移率(强共轭)一直是有机分子设计中难以调和的矛盾,此外更宽的带隙也会导致较差的热稳定性,这些难题始终限制着OLED电子传输材料的发展。本文分类介绍了高性能的电子传输材料所需要具备的几点特性,包括热稳定性、光化学稳定性、电子迁移率、前线轨道能级和三重态能级等,并且综述了21世纪以来OLED小分子电子传输材料的重要研究进展,以期对未来开发理想的电子传输材料提供参考。
Organic light emitting diodes (OLED) technology is considered to be the next generation of display technology, and has gradually occupied the mainstream of the market, but the performance of OLED is still largely limited by electron transport materials, especially in high-performance deep blue light devices. Because it is difficult for organic molecules to obtain high electron mobility, and the recombination zone in the device is usually close to the interface of the electron transport layer, which requires the electron transport material to have a high triplet energy level to confine the exciton, especially the blue light exciton with high energy. However, high triplet states (poor conjugation) and high mobility (strong conjugation) have always been difficult to reconcile in the design of organic molecules, and a wider band gap will also lead to poorer thermal stability. These problems have been affecting the development of OLED electronic transport materials. In this paper, several elements of high performance electronic transport materials are introduced, including thermal stability, photochemical stability, electron mobility, the frontier orbital and the triplet energy level and so on. And the important research progresses of the micromolecular electron transport materials in 21st century are summarized, in order to provide the reference for the development of the ideal electronic transfer materials in the future.
有机电致发光电子传输材料稳定性电子迁移率三重态能级
organic light-emitting diodeselectronic transport materialsstabilityelectron mobilitytriplet energy
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
KIDO J, IIZUMI Y. Fabrication of highly efficient organic electroluminescent devices [J]. Appl. Phys. Lett., 1998, 73(19): 2721-2723. doi: 10.1063/1.122570http://dx.doi.org/10.1063/1.122570
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
ENDO A, OGASAWARA M, TAKAHASHI A, et al. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence [J]. Adv. Mater., 2009, 21(47): 4802-4806. doi: 10.1002/adma.200900983http://dx.doi.org/10.1002/adma.200900983
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-239. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
XU Z, TANG B Z, WANG Y, et al. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters [J]. J. Mater. Chem. C, 2020, 8(8): 2614-2642. doi: 10.1039/c9tc06441ahttp://dx.doi.org/10.1039/c9tc06441a
ZHANG D D, DUAN L. TADF sensitization targets deep-blue [J]. Nat. Photonics, 2021, 15(3): 173-174. doi: 10.1038/s41566-021-00765-3http://dx.doi.org/10.1038/s41566-021-00765-3
HUSAIN A, KIM S M, KIM J H, et al. Thermal performance analysis and optimization of microjet cooling of high-power light-emitting diodes [J]. J. Thermophys. Heat Transf., 2013, 27(2): 235-245. doi: 10.2514/1.t3931http://dx.doi.org/10.2514/1.t3931
GÄRDITZ C, WINNACKER A, SCHINDLER F, et al. Impact of Joule heating on the brightness homogeneity of organic light emitting devices [J]. Appl. Phys. Lett., 2007, 90(10): 103506-1-3. doi: 10.1063/1.2711708http://dx.doi.org/10.1063/1.2711708
KIM J, LEE H H. Wave formation by heating in thin metal film on an elastomer [J]. J. Polym. Sci. Part B Polym. Phys., 2001, 39(11): 1122-1128. doi: 10.1002/polb.1088http://dx.doi.org/10.1002/polb.1088
SAVVATE’EV V N, YAKIMOV A V, DAVIDOV D, et al. Degradation of nonencapsulated polymer-based light-emitting diodes: noise and morphology [J]. Appl. Phys. Lett., 1997, 71(23): 3344-3346. doi: 10.1063/1.120332http://dx.doi.org/10.1063/1.120332
AZIZ H, POPOVIC Z D, HU N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices [J]. Science, 1999, 283(5409): 1900-1902. doi: 10.1126/science.283.5409.1900http://dx.doi.org/10.1126/science.283.5409.1900
KONDAKOV D Y, LENHART W C, NICHOLS W F. Operational degradation of organic light-emitting diodes: mechanism and identification of chemical products [J]. J. Appl. Phys., 2007, 101(2): 024512-1-7. doi: 10.1063/1.2430922http://dx.doi.org/10.1063/1.2430922
SCHOLZ S, CORTEN C, WALZER K, et al. Photochemical reactions in organic semiconductor thin films [J]. Org. Electron., 2007, 8(6): 709-717. doi: 10.1016/j.orgel.2007.06.002http://dx.doi.org/10.1016/j.orgel.2007.06.002
WANG R, WANG Y L, LIN N, et al. Effects of ortho-linkages on the molecular stability of organic light-emitting diode materials [J]. Chem. Mater., 2018, 30(24): 8771-8781. doi: 10.1021/acs.chemmater.8b03142http://dx.doi.org/10.1021/acs.chemmater.8b03142
BIAN M Y, ZHANG D D, WANG Y X, et al. Long-lived and highly efficient TADF-PhOLED with “(A)n-D-(A)n” structured terpyridine electron-transporting material [J]. Adv. Funct. Mater., 2018, 28(28): 1800429-1-9. doi: 10.1002/adfm.201800429http://dx.doi.org/10.1002/adfm.201800429
LIU Z G, PINTO J, SOARES J, et al. Efficient multilayer organic light emitting diode [J]. Synth. Met., 2001, 122(1): 177-179. doi: 10.1016/s0379-6779(00)01374-6http://dx.doi.org/10.1016/s0379-6779(00)01374-6
MATSUSHIMA T, ADACHI C. Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers [J]. Appl. Phys. Lett., 2006, 89(25): 253506-1-3. doi: 10.1063/1.2410236http://dx.doi.org/10.1063/1.2410236
CHANG C C, CHEN J F, HWANG S W, et al. Highly efficient white organic electroluminescent devices based on tandem architecture [J]. Appl. Phys. Lett., 2005, 87(25): 253501-1-3. doi: 10.1063/1.2147730http://dx.doi.org/10.1063/1.2147730
LUO J X, XIAO L X, CHEN Z J, et al. Highly efficient organic light emitting devices with insulator MnO as an electron injecting and transporting material [J]. Appl. Phys. Lett., 2008, 93(13): 133301-1-3. doi: 10.1063/1.2960349http://dx.doi.org/10.1063/1.2960349
PU Y J, MIYAMOTO M, NAKAYAMA K I, et al. Lithium phenolate complexes for an electron injection layer in organic light-emitting diodes [J]. Org. Electron., 2009, 10(2): 228-232. doi: 10.1016/j.orgel.2008.11.003http://dx.doi.org/10.1016/j.orgel.2008.11.003
CHIBA T, PU Y J, IDE T, et al. Addition of lithium 8-quinolate into polyethylenimine electron-injection layer in OLEDs: not only reducing driving voltage but also improving device lifetime [J]. ACS Appl. Mater. Interfaces, 2017, 9(21): 18113-18119. doi: 10.1021/acsami.7b02658http://dx.doi.org/10.1021/acsami.7b02658
ZHENG X Y, WU Y Z, SUN R G, et al. Efficiency improvement of organic light-emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer [J]. Thin Solid Films, 2005, 478(1-2): 252-255. doi: 10.1016/j.tsf.2004.08.020http://dx.doi.org/10.1016/j.tsf.2004.08.020
BIN Z Y, DONG G F, WEI P C, et al. Making silver a stronger n-dopant than cesium via in situ coordination reaction for organic electronics [J]. Nat. Commun., 2019, 10(1): 866-1-7. doi: 10.1038/s41467-019-08821-xhttp://dx.doi.org/10.1038/s41467-019-08821-x
XIAO L X, CHEN Z J, QU B, et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices [J]. Adv. Mater., 2011, 23(8): 926-952. doi: 10.1002/adma.201003128http://dx.doi.org/10.1002/adma.201003128
IM Y, BYUN S Y, KIM J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Adv. Funct. Mater., 2017, 27(13): 1603007-1-24. doi: 10.1002/adfm.201603007http://dx.doi.org/10.1002/adfm.201603007
DUAN K, ZHU Y H, LIU Z, et al. A wide-bandgap, high-mobility electron-transporting material containing a 9,9'-spirobithioxanthene skeleton [J]. Chem. Eng. J., 2022, 429: 132215. doi: 10.1016/j.cej.2021.132215http://dx.doi.org/10.1016/j.cej.2021.132215
BRINKMANN M, GADRET G, MUCCINI M, et al. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(Ⅲ) [J]. J. Am. Chem. Soc., 2000, 122(21): 5147-5157. doi: 10.1021/ja993608khttp://dx.doi.org/10.1021/ja993608k
YEH S J, WU M F, CHEN C T, et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices [J]. Adv. Mater., 2005, 17(3): 285-289. doi: 10.1002/adma.200401373http://dx.doi.org/10.1002/adma.200401373
LI Y Q, FUNG M K, XIE Z Y, et al. An efficient pure blue organic light-emitting device with low driving voltages [J]. Adv. Mater., 2002, 14(18): 1317-1321. doi: 10.1002/1521-4095(20020916)14:18<1317::aid-adma1317>3.0.co;2-shttp://dx.doi.org/10.1002/1521-4095(20020916)14:18<1317::aid-adma1317>3.0.co;2-s
NAKA S, OKADA H, ONNAGAWA H, et al. High electron mobility in bathophenanthroline [J]. Appl. Phys. Lett., 2000, 76(2): 197-199. doi: 10.1063/1.125701http://dx.doi.org/10.1063/1.125701
WU I W, WANG P S, TSENG W H, et al. Correlations of impedance-voltage characteristics and carrier mobility in organic light emitting diodes [J]. Org. Electron., 2012, 13(1): 13-17. doi: 10.1016/j.orgel.2011.09.016http://dx.doi.org/10.1016/j.orgel.2011.09.016
SU S J, CHIBA T, TAKEDA T, et al. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs [J]. Adv. Mater., 2008, 20(11): 2125-2130. doi: 10.1002/adma.200701730http://dx.doi.org/10.1002/adma.200701730
SU S J, TAKAHASHI Y, CHIBA T, et al. Structure-property relationship of pyridine-containing triphenyl benzene electron-transport materials for highly efficient blue phosphorescent OLEDs [J]. Adv. Funct. Mater., 2009, 19(8): 1260-1267. doi: 10.1002/adfm.200800809http://dx.doi.org/10.1002/adfm.200800809
SU S J, GONMORI E, SASABE H, et al. Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off [J]. Adv. Mater., 2008, 20(21): 4189-4194.
DAISAKU T D, TAKASHI T, TAKAYUKI C, et al. Novel electron-transport material containing boron atom with a high triplet excited energy level [J]. Chem. Lett., 2007, 36(2): 262-263. doi: 10.1246/cl.2007.262http://dx.doi.org/10.1246/cl.2007.262
TANAKA D, SASABE H, LI Y J, et al. Ultra high efficiency green organic light-emitting devices [J]. Jpn. J. Appl. Phys., 2007, 46(1L): L10-L12. doi: 10.1143/jjap.46.l10http://dx.doi.org/10.1143/jjap.46.l10
SASABE H, CHIBA T, SU S J, et al. 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices [J]. Chem. Commun., 2008, (44): 5821-5823. doi: 10.1039/b812270ahttp://dx.doi.org/10.1039/b812270a
SASABE H, TANAKA D, YOKOYAMA D, et al. Influence of substituted pyridine rings on physical properties and electron mobilities of 2-methylpyrimidine skeleton-based electron transporters [J]. Adv. Funct. Mater., 2011, 21(2): 336-342. doi: 10.1002/adfm.201001252http://dx.doi.org/10.1002/adfm.201001252
SASABE H, NAKANISHI H, WATANABE Y, et al. Extremely low operating voltage green phosphorescent organic light-emitting devices [J]. Adv. Funct. Mater., 2013, 23(44): 5550-5555. doi: 10.1002/adfm.201301069http://dx.doi.org/10.1002/adfm.201301069
XIAO L X, LAN H, KIDO J. Highly efficient electron-transporting phenanthroline derivatives for electroluminescent devices [J]. Chem. Lett., 2007, 36(6): 802-803. doi: 10.1246/cl.2007.802http://dx.doi.org/10.1246/cl.2007.802
XIAO L X, SU S J, AGATA Y, et al. Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap [J]. Adv. Mater., 2009, 21(12): 1271-1274. doi: 10.1002/adma.200802034http://dx.doi.org/10.1002/adma.200802034
XIAO L X, QI B Y, XING X, et al. A weak electron transporting material with high triplet energy and thermal stability via a super twisted structure for high efficient blue electrophosphorescent devices [J]. J. Mater. Chem., 2011, 21(47): 19058-19062. doi: 10.1039/c1jm13488dhttp://dx.doi.org/10.1039/c1jm13488d
XING X, ZHANG L P, LIU R, et al. A deep-blue emitter with electron transporting property to improve charge balance for organic light-emitting device [J]. ACS Appl. Mater. Interfaces, 2012, 4(6): 2877-2880. doi: 10.1021/am300685bhttp://dx.doi.org/10.1021/am300685b
BIAN M Y, WANG Y X, GUO X, et al. Positional isomerism effect of spirobifluorene and terpyridine moieties of “(A)n-D-(A)n” type electron transport materials for long-lived and highly efficient TADF-PhOLEDs [J]. J. Mater. Chem. C, 2018, 6(38): 10276-10283. doi: 10.1039/c8tc03796ehttp://dx.doi.org/10.1039/c8tc03796e
GUO X, BIAN M Y, LV F, et al. Increasing electron transporting properties and horizontal molecular orientation via meta-position of nitrogen for “(A)n‐D‐(A)n” structured terpyridine electron-transporting material [J]. J. Mater. Chem. C, 2019, 7(37): 11581-11587. doi: 10.1039/c9tc03787jhttp://dx.doi.org/10.1039/c9tc03787j
GUO X, LV F, ZHAO Z F, et al. Spirobifluorene-based oligopyridine derivatives as electron-transporting materials for green phosphorescent organic light-emitting diodes [J]. Org. Electron., 2020, 77: 105498-1-8. doi: 10.1016/j.orgel.2019.105498http://dx.doi.org/10.1016/j.orgel.2019.105498
GUO X, TANG Z Y, YU W J, et al. A high thermal stability terpyridine derivative as the electron transporter for long-lived green phosphorescent OLED [J]. Org. Electron., 2021, 89: 106048-1-7. doi: 10.1016/j.orgel.2020.106048http://dx.doi.org/10.1016/j.orgel.2020.106048
ZHANG D D, QIAO J, ZHANG D Q, et al. Ultrahigh-efficiency green PHOLEDs with a voltage under 3 V and a power efficiency of nearly 110 lm·W-1 at luminance of 10 000 cd·m-2 [J]. Adv. Mater., 2017, 29(40): 1702847-1-8. doi: 10.1002/adma.201702847http://dx.doi.org/10.1002/adma.201702847
ZHANG D D, WEI P C, ZHANG D Q, et al. Sterically shielded electron transporting material with nearly 100% internal quantum efficiency and long lifetime for thermally activated delayed fluorescent and phosphorescent OLEDs [J]. ACS Appl. Mater. Interfaces, 2017, 9(22): 19040-19047. doi: 10.1021/acsami.7b04391http://dx.doi.org/10.1021/acsami.7b04391
WANG F F, HU J, CAO X D, et al. A low-cost phenylbenzoimidazole containing electron transport material for efficient green phosphorescent and thermally activated delayed fluorescent OLEDs [J]. J. Mater. Chem. C, 2015, 3(21): 5533-5540. doi: 10.1039/c5tc00350dhttp://dx.doi.org/10.1039/c5tc00350d
JEON S O, JANG S E, SON H S, et al. External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes [J]. Adv. Mater., 2011, 23(12): 1436-1441. doi: 10.1002/adma.201004372http://dx.doi.org/10.1002/adma.201004372
HUNG W Y, FANG G C, LIN S W, et al. The first tandem, all-exciplex-based WOLED [J]. Sci. Rep., 2015, 4: 5161-1-6. doi: 10.1038/srep05161http://dx.doi.org/10.1038/srep05161
SHIN H, LEE J H, MOON C K, et al. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer [J]. Adv. Mater., 2016, 28(24): 4920-4925. doi: 10.1002/adma.201506065http://dx.doi.org/10.1002/adma.201506065
0
Views
619
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution