浏览全部资源
扫码关注微信
1.重庆邮电大学 光电工程学院 & “重庆邮电大学⁃伦敦布鲁内尔大学”交叉创新研究院, 重庆 400065
2.塔尔图大学 物理研究所, 爱沙尼亚 塔尔图 50411
3.琴斯托霍瓦师范大学 科学与技术学院, 波兰 琴斯托霍瓦 42200
4.罗马尼亚国家科学院, 罗马尼亚 布加勒斯特 050044
[ "BRIK Mikhail G (1969 - ), received his PhD from Kuban State University (Russia) in 1995 and his DSc (habilitation) from the Institute of Physics, Polish Academy of Sciences (Poland) in 2012. Since 2007 he is a professor at the Institute of Physics, University of Tartu, Estonia. Before that, he worked at Kyoto University (Japan) from 2003 to 2007, Weizmann Institute of Science (Israel) in 2002, Asmara University (Eritrea) from 2000 to 2001, and Kuban State University from 1995 to 2000. He is also a distinguished visiting professor at Chongqing University of Posts and Telecommunications (China) and Professor at Jan Długosz University (Poland). Since 2015 he serves as one of the editors of Optical Materials (Elsevier). Prof. Brik’s scientific interests cover theoretical spectroscopy of transition metal and rare earth ions in optical materials, crystal field theory, and ab initio calculations of the physical properties of pure and doped functional compounds. He is a coeditor of two books and author of 12 book chapters and about 410 papers in international journals. According to Google Scholar (June 2020), he has more than 8 500 citations with h index 45. He received the Dragomir Hurmuzescu Award of Romanian Academy in 2006 and the State Prize of the Republic of Estonia in the field of exact sciences in 2013. In 2018 he received the state professor title from the President of Poland." ]
[ "MA Chong⁃geng g(1980-), received his PhD from University of Science and Technology of China in 2008. He spent three years(2010—2013)as a post⁃doctor in University of Tartu with the financial support of Eu⁃ropean Social Fund. He was also a visiting professor at University of Verona in 2017. His area of scientific interests covers the first ⁃ principles and crystal-field design of luminescent materials. He has published one book and more than 100 papers in international journals, which attracted more than 2 500 citations(hindex=27). Currently he is a full professor and the director of CQUPT ⁃BUL Innovation Institute at Chong ⁃qing University of Posts and Telecommunications.Email: macg@cqupt.edu.cn" ]
Published:05 September 2022,
Received:06 June 2022,
Revised:04 July 2022,
扫 描 看 全 文
BRIK Mikhail G,KURBONIYON Mekhrdod S,马崇庚.八面体配合物中Ni2+离子的光谱性质[J].发光学报,2022,43(09):1459-1468.
G BRIK Mikhail,S KURBONIYON Mekhrdod,MA Chong-geng.Spectroscopic Properties of Ni2+ Ions in Octahedral Complexes[J].Chinese Journal of Luminescence,2022,43(09):1459-1468.
BRIK Mikhail G,KURBONIYON Mekhrdod S,马崇庚.八面体配合物中Ni2+离子的光谱性质[J].发光学报,2022,43(09):1459-1468. DOI: 10.37188/CJL.20220243.
G BRIK Mikhail,S KURBONIYON Mekhrdod,MA Chong-geng.Spectroscopic Properties of Ni2+ Ions in Octahedral Complexes[J].Chinese Journal of Luminescence,2022,43(09):1459-1468. DOI: 10.37188/CJL.20220243.
基于最新的文献数据,我们研究了八面体配位下Ni
2+
离子自旋禁止跃迁
3
A
2
⁃
1
E的能量与新的电子云膨胀效应参数
<math id="M4"><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo>=</mo><mroot><mrow><msup><mrow><mfenced separators="|"><mrow><mrow><mrow><mi>B</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>+</mo><msup><mrow><mfenced separators="|"><mrow><mrow><mrow><mi>C</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mtext> </mtext></mrow><mrow/></mroot></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822410&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822406&type=
35.81399918
6.68866634
之间的经验关系,其中(
B
、
C
)和(
B
0
、
C
0
)分别是Ni
2+
离子在晶体中和自由离子状态下描述3d电子间库仑作用的拉卡参数。研究结果表明,Ni
2+
离子
1
E态的能量是
<math id="M5"><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822417&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822415&type=
2.96333337
3.80999994
参数的线性函数。这样的发现确认了完全处理电子云膨胀效应需要同时考虑两个拉卡参数
B
和
C
约减贡献的重要事实。通常使用的电子云膨胀效应参数
<math id="M6"><mi>β</mi><mo>=</mo><mrow><mrow><mi>B</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822423&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822421&type=
12.61533356
3.30200005
由于完全忽略了拉卡参数
C
的约减贡献,在估计
1
E态能级位置上是不准确的。相比而言,我们构建的理论方法则更好。本文所收集的实验数据以及实施的理论分析均将会对Ni
2+
离子掺杂材料的光谱学研究有一定的参考价值。
Based on an up-do-date literature data, we consider an empirical trend between the energy of the spin-forbidden
3
A
2
-
1
E transition of the octahedrally coordinated Ni
2+
ions and a new nephelauxetic parameter
<math id="M1"><mtext> </mtext><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo>=</mo><mroot><mrow><msup><mrow><mfenced separators="|"><mrow><mrow><mrow><mi>B</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>+</mo><msup><mrow><mfenced separators="|"><mrow><mrow><mrow><mi>C</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mtext> </mtext></mrow><mrow/></mroot></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822390&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822387&type=
36.83000183
6.68866634
(
B
,
C
(
B
0
,
C
0
) are the Racah parameters of Ni
2+
ions in a crystal(free state), respectively). It is demonstrated that the energy of the Ni
2+ 1
E state is a linear function of the
<math id="M2"><msub><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822396&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822394&type=
2.96333337
3.80999994
parameter. These findings prove importance of a simultaneous consideration of reduction of both Racah parameters
B
and
C
due to the nephelauxetic effect. Such an approach is more accurate in estimating the energy position of the
1
E level. The commonly used nephelauxetic ratio
<math id="M3"><mi>β</mi><mo>=</mo><mrow><mrow><mi>B</mi><mtext> </mtext></mrow><mo>/</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></mrow></mrow></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822402&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=39822401&type=
12.61533356
3.30200005
, which completely ignores the reduction in the values of the Racah parameter
C
, is not accurate enough for this purpose. The collected in the present paper experimental data and their analysis can be useful for researchers working with the crystalline materials doped with Ni
2+
ions.
Ni2+自旋禁戒跃迁共价性
Ni2+spin-forbidden transitionscovalency
POWELL R C. Physics of Solid⁃state Laser Materials [M]. New York: Springer, 1998. doi: 10.1007/978-1-4612-0643-9http://dx.doi.org/10.1007/978-1-4612-0643-9
AVRAM N M, BRIK M G. Optical Properties of 3d⁃ions in Crystals: Spectroscopy and Crystal Field Analysis [M]. Beijing: Tsinghua University Press, 2013.
BRIK M G, MA C G. Theoretical Spectroscopy of Transition Metal and Rare Earth Ions: From Free State to Crystal Field [M]. New York: Jenny Stanford Publishing, 2020.
KÜCK S. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers [J]. Appl. Phys. B, 2001, 72(5): 515-562. doi: 10.1007/s003400100540http://dx.doi.org/10.1007/s003400100540
LIU R S, WANG X J. Phosphor Handbook: Experimental Methods for Phosphor Evaluation and Characterization [M]. 3rd ed. London: CRC Press, 2022.
SETLUR A A, RADKOV E V, HENDERSON C S, et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors [J]. Chem. Mater., 2010, 22(13): 4076-4082. doi: 10.1021/cm100960ghttp://dx.doi.org/10.1021/cm100960g
SRIVASTAVA A M, SOULES T F. Luminescent materials (Phosphors) [M]. Kirk-Othmer Eds. Kirk-Othmer Encyclopedia of Chemical Technology. 4th ed. Vol.15. New York: John Wiley & Sons, 1995.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review [J]. J. Mater. Chem. C, 2018, 6(11): 2652-2671. doi: 10.1039/c8tc00251ghttp://dx.doi.org/10.1039/c8tc00251g
NIE J M, LI Y, LIU S S, et al. Tunable long persistent luminescence in the second near-infrared window via crystal field control [J]. Sci. Rep., 2017, 7(1): 12392-1-7. doi: 10.1038/s41598-017-12591-1http://dx.doi.org/10.1038/s41598-017-12591-1
MATUSZEWSKA C, MARCINIAK L. The influence of host material on NIR Ⅱ and NIR Ⅲ emitting Ni2+ based luminescent thermometers in ATiO3∶Ni2+ (A=Sr, Ca, Mg, Ba) nanocrystals [J]. J. Lumin., 2020, 223: 117221-1-9. doi: 10.1016/j.jlumin.2020.117221http://dx.doi.org/10.1016/j.jlumin.2020.117221
GAO Y, WANG B N, LIU L, et al. Near-infrared engineering for broad-band wavelength-tunable in biological window of NIR-Ⅱ and -Ⅲ: a solid solution phosphor of Sr1-xCaxTiO3∶Ni2+ [J]. J. Lumin., 2021, 238: 118235-1-7. doi: 10.1016/j.jlumin.2021.118235http://dx.doi.org/10.1016/j.jlumin.2021.118235
SUGANO S, TANABE Y, KAMIMURA H. Multiplets of Transition⁃metal Ions in Crystals [M]. New York: Academic Press, 1970.
FIGGIS B N, HITCHMAN M A. Ligand Field Theory and Its Applications [M]. New York: Wiley-VCH, 2000.
BRIK M G, SRIVASTAVA A M. Electronic energy levels of the Mn4+ Ion in the perovskite, CaZrO3 [J]. ECS J. Solid State Sci. Technol., 2013, 2(7): R148-R152. doi: 10.1149/2.020307jsshttp://dx.doi.org/10.1149/2.020307jss
SRIVASTAVA A M, BRIK M G. Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3 [J]. Opt. Mater., 2013, 35(8): 1544-1548. doi: 10.1016/j.optmat.2013.03.021http://dx.doi.org/10.1016/j.optmat.2013.03.021
BRIK M G, SRIVASTAVA A M, AVRAM N M, et al. Empirical relation between covalence and the energy position of the Ni2+ 1E state in octahedral complexes [J]. J. Lumin., 2014, 148: 338-341. doi: 10.1016/j.jlumin.2013.12.052http://dx.doi.org/10.1016/j.jlumin.2013.12.052
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M. Influence of covalency on the Mn4+ 2Eg→4A2g emission energy in crystals [J]. ECS J. Solid State Sci. Technol., 2015, 4(3): R39-R43. doi: 10.1149/2.0031503jsshttp://dx.doi.org/10.1149/2.0031503jss
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect [J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3067-R3077. doi: 10.1149/2.0091601jsshttp://dx.doi.org/10.1149/2.0091601jss
MA C G, WANG Y, LIU D X, et al. Origin of the β1 parameter describing the nephelauxetic effect in transition metal ions with spin-forbidden emissions [J]. J. Lumin., 2018, 197: 142-146. doi: 10.1016/j.jlumin.2018.01.036http://dx.doi.org/10.1016/j.jlumin.2018.01.036
BRIK Mikhail G, 马崇庚, SRIVASTAVA Alok M, 等. 用于固态照明的Mn4+离子光谱学 [J]. 发光学报, 2020, 41(9): 1011-1029. doi: 10.1016/j.jlumin.2019.116834http://dx.doi.org/10.1016/j.jlumin.2019.116834
BRIK M G, MA C G, SRIVASTAVA A M, et al. Mn4+ ions for solid state lighting [J]. Chin. J. Lumin., 2020, 41(9): 1011-1029. (in English). doi: 10.1016/j.jlumin.2019.116834http://dx.doi.org/10.1016/j.jlumin.2019.116834
UYLINGS P H M, RAASSEN A J J, WYART J F. Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters: a new complete set of orthogonal operators: Ⅱ. Application to 3dN configurations [J]. J. Phys. B: At. Mol. Phys., 1984, 17(20): 4103-4126. doi: 10.1088/0022-3700/17/20/010http://dx.doi.org/10.1088/0022-3700/17/20/010
WANG H Q, KUANG X Y, LI H F. EPR and optical spectra of Ni2+-VAg in silver chloride and silver bromide [J]. Mol. Phys., 2009, 107(7): 621-627. doi: 10.1080/00268970902845271http://dx.doi.org/10.1080/00268970902845271
BRIK M G, AVRAM C N, AVRAM N M. Comparative study of crystal field effects for Ni2+ ion in LiGa5O8, MgF2 and AgCl crystals [J]. J. Phys. Chem. Solids, 2008, 69(7): 1796-1801. doi: 10.1016/j.jpcs.2008.01.004http://dx.doi.org/10.1016/j.jpcs.2008.01.004
FANG W, WANG Q W, YANG W Y, et al. Theoretical studies of EPR parameters and defect structures for Ni2+ ions in corundum [J]. Phys. B Condens. Matter, 2013, 408: 169-174. doi: 10.1016/j.physb.2012.09.031http://dx.doi.org/10.1016/j.physb.2012.09.031
REDDY V, KRISHNA R, RAO T R, et al. Synthesis and optical properties of Co2+ and Ni2+ ions doped β-BaB2O4 nanopowders [J]. J. Lumin., 2012, 132(9): 2325-2329. doi: 10.1016/j.jlumin.2012.04.024http://dx.doi.org/10.1016/j.jlumin.2012.04.024
ANDREICI E L, AVRAM N M. Fine structure of optical energy levels scheme for Ni2+ doped in inverted perovskite BaLiF3 [J]. AIP Conf. Proc., 2011, 1387: 155-159. doi: 10.1063/1.3647067http://dx.doi.org/10.1063/1.3647067
BRIK M G. Crystal field analysis of the absorption spectra and electron-phonon interaction in Ca3Sc2Ge3O12∶Ni2+ [J]. J. Phys. Chem. Solids, 2006, 67(4): 738-744. doi: 10.1016/j.jpcs.2005.11.005http://dx.doi.org/10.1016/j.jpcs.2005.11.005
ACKERMAN J, FOUASSIER C, HOLT E M, et al. 5.deg. Crystal spectra of nickel(Ⅱ) chloride and nickel(Ⅱ) bromide [J]. Inorg. Chem., 1972, 11(12): 3118-3122. doi: 10.1021/ic50118a052http://dx.doi.org/10.1021/ic50118a052
BRIK M G, KITYK I V, OZGA K, et al. Structural, electronic and optical properties of pure and Ni2+-doped CdI2 layered crystals as explored by ab initio and crystal field calculations [J]. Phys. B Condens. Matter, 2011, 406(2): 192-199. doi: 10.1016/j.physb.2010.09.051http://dx.doi.org/10.1016/j.physb.2010.09.051
WENGER O S, BÉNARD S, GÜDEL H U. Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state [J]. Inorg. Chem., 2002, 41(23): 5968-5977. doi: 10.1021/ic020347yhttp://dx.doi.org/10.1021/ic020347y
OETLIKER U, RILEY M J, GÜDEL H U. Excited state spectroscopy of Ni2+ doped chloride and fluoride lattices [J]. J. Lumin., 1995, 63(1-2): 63-73. doi: 10.1016/0022-2313(94)00046-fhttp://dx.doi.org/10.1016/0022-2313(94)00046-f
FENG W L, CHEN J J, HAN Z. Investigations of the optical and EPR spectra for (NiX6)4- (X=Cl, Br, I) clusters [J]. J. Magn. Magn. Mater., 2009, 321(19): 3290-3292. doi: 10.1016/j.jmmm.2009.05.065http://dx.doi.org/10.1016/j.jmmm.2009.05.065
FERGUSON J, GUGGENHEIM H J, WOOD D L. Electronic absorption spectrum of Ni Ⅱ in cubic perovskite fluorides. Ⅰ [J]. J. Chem. Phys., 1964, 40(3): 822-830. doi: 10.1063/1.1725212http://dx.doi.org/10.1063/1.1725212
BARREDA-ARGÜESO J A, RODRÍGUEZ F. Pressure dependence of the crystal-field spectrum of KNiF3: Single and double excitations [J]. Phys. Rev. B, 2021, 103(8): 085115-1-9. doi: 10.1103/physrevb.103.085115http://dx.doi.org/10.1103/physrevb.103.085115
BRIK M G, KUMAR G A, SARDAR D K. Ab initio, crystal field and experimental spectroscopic studies of pure and Ni2+-doped KZnF3 crystals [J]. Mater. Chem. Phys., 2012, 136(1): 90-102. doi: 10.1016/j.matchemphys.2012.06.035http://dx.doi.org/10.1016/j.matchemphys.2012.06.035
WANG S J, KUANG X Y, LU C. Theoretical study of local structure for Ni2+ ions at tetragonal sites in K2ZnF4∶Ni2+ system [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(4): 1317-1320. doi: 10.1016/j.saa.2008.04.002http://dx.doi.org/10.1016/j.saa.2008.04.002
FANG W, TANG H Y, CHENG W D, et al. Theoretical investigations of optical spectra and electron paramagnetic resonance spectra of LiCl:Ni2+ crystals [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 99: 342-346. doi: 10.1016/j.saa.2012.08.041http://dx.doi.org/10.1016/j.saa.2012.08.041
FENG W L, ZHENG W C. Studies of the defect structure from the calculations of optical and electron paramagnetic resonance spectra for Ni2+ centre in α⁃LiIO3 crystal [J]. Pramana, 2008, 71(3): 573-578. doi: 10.1007/s12043-008-0132-yhttp://dx.doi.org/10.1007/s12043-008-0132-y
YANG Z Y, RUDOWICZ C, YEUNG Y Y. Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals [J]. Phys. B Condens. Matter, 2004, 348(1-4): 151-159. doi: 10.1016/j.physb.2003.11.085http://dx.doi.org/10.1016/j.physb.2003.11.085
BRIK M G, AVRAM N M, AVRAM C N, et al. Ground and excited state absorption of Ni2+ ions in MgAl2O4: crystal field analysis [J]. J. Alloys Compd., 2007, 432(1-2): 61-68. doi: 10.1016/j.jallcom.2006.06.025http://dx.doi.org/10.1016/j.jallcom.2006.06.025
GONZÁLEZ E, RODRIGUE-WITCHEL A, REBER C. Absorption spectroscopy of octahedral nickel (Ⅱ) complexes: a case study of interactions between multiple electronic excited states [J]. Coord. Chem. Rev., 2007, 251(3-4): 351-363. doi: 10.1016/j.ccr.2006.08.011http://dx.doi.org/10.1016/j.ccr.2006.08.011
ANDREICI E L, STANCIU M, AVRAM N M. Crystal field studies on MgGa2O4∶Ni2+ [J]. AIP Conf. Proc., 2010, 1262(1): 130-135. doi: 10.1063/1.3482219http://dx.doi.org/10.1063/1.3482219
MIRONOVA-ULMANE N, BRIK M G, SILDOS I. Crystal field calculations of energy levels of the Ni2+ ions in MgO [J]. J. Lumin., 2013, 135: 74-78. doi: 10.1016/j.jlumin.2012.10.026http://dx.doi.org/10.1016/j.jlumin.2012.10.026
ZAMYATIN O A, CHURBANOV M F, PLOTNICHENKO V G, et al. Optical properties of the MoO3-TeO2 glasses doped with Ni2+ ions [J]. J. Non⁃Cryst. Solids, 2018, 480: 74-80. doi: 10.1016/j.jnoncrysol.2017.08.016http://dx.doi.org/10.1016/j.jnoncrysol.2017.08.016
MOLCHANOVA A D. Experimental study and analysis of absorption spectra of Ni2+ ions in nickel orthoborate Ni3(BO3)2 [J]. Phys. Solid State, 2018, 60(10): 1957-1965. doi: 10.1134/s1063783418100219http://dx.doi.org/10.1134/s1063783418100219
BRIK M G, AVRAM N M, AVRAM C N. Comparative crystal field study of Ni2+ energy levels in NiCl2, NiBr2, and NiI2 crystals [J]. Phys. B Condens. Matter, 2006, 371(1): 43-49. doi: 10.1016/j.physb.2005.09.034http://dx.doi.org/10.1016/j.physb.2005.09.034
KAMMOUN S, DAMMAK M, MAALEJ R, et al. Crystal-field analysis for d8 ions at D4h symmetry sites: Electronic states in trans-NiCl2(H2O)4 complex [J]. J. Lumin., 2007, 124(2): 316-320. doi: 10.1016/j.jlumin.2006.04.006http://dx.doi.org/10.1016/j.jlumin.2006.04.006
ZHAO M G, DU M L. Determination of the state equation of NiX2 from the high-pressure spectra shifts [J]. J. Phys. C: Solid State Phys., 1987, 20(28): 4467-4475. doi: 10.1088/0022-3719/20/28/011http://dx.doi.org/10.1088/0022-3719/20/28/011
LI H F, KUANG X Y, WANG H Q. Local structural properties of (NiF6)4- clusters in perovskite fluorides RbMF3(M = Cd2+, Ca2+, Mg2+) series: EPR and optical spectra study in tetragonal and trigonal ligand field [J]. Chem. Phys. Lett., 2008, 462(1-3): 133-137. doi: 10.1016/j.cplett.2008.07.053http://dx.doi.org/10.1016/j.cplett.2008.07.053
ALCALA R, CASAS GONZALEZ J, VILLACAMPA B, et al. Photoluminescence of Ni2+ ions in RbCdF3 and RbCaF3 [J]. J. Lumin., 1991, 48-49: 569-573. doi: 10.1016/0022-2313(91)90195-2http://dx.doi.org/10.1016/0022-2313(91)90195-2
PLOTNICHENKO V G, SOKOLOV V O, SNOPATIN G E, et al. Optical absorption and structure of impurity Ni2+ center in tungstate⁃tellurite glass [J]. J. Non⁃Cryst. Solids, 2011, 357(3): 1070-1073. doi: 10.1016/j.jnoncrysol.2010.10.026http://dx.doi.org/10.1016/j.jnoncrysol.2010.10.026
SUZUKI T, HORIBUCHI K, OHISHI Y. Structural and optical properties of ZnO-Al2O3-SiO2 system glass⁃eramics containing Ni2+-doped nanocrystals [J]. J. Non Cryst. Solids, 2005, 351(27-29): 2304-2309. doi: 10.1016/j.jnoncrysol.2005.06.015http://dx.doi.org/10.1016/j.jnoncrysol.2005.06.015
KUMARI G K, BEGUM M, KRISHNA R, et al. Physical and optical properties of Co2+, Ni2+ doped 20ZnO+xLi2O+(30-x)K2O+50B2O3 (5 ≤ x ≤ 25) glasses: observation of mixed alkali effect [J]. Mater. Res. Bull., 2012, 47(9): 2646-2654.
RAO T R, KRISHNA R, VENKATA REDDY C H Vet al. Mixed alkali effect and optical properties of Ni2+ doped 20ZnO+xLi2O+(30-x)Na2O+50B2O3 glasses [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5): 1116-1122. doi: 10.1016/j.saa.2011.04.030http://dx.doi.org/10.1016/j.saa.2011.04.030
WANG S J, KUANG X Y, DUAN M L, et al. Comparative study of EPR spectra and crystal field effect on local structure for (NiF6)4- coordination complex in Ni2+∶ZnF2, NiF2, and Ni2+∶MgF2 systems [J]. Phys. Status Sol. B, 2010, 247(2): 416-421. doi: 10.1002/pssb.200945261http://dx.doi.org/10.1002/pssb.200945261
GURUGUBELLI T R, RAVIKUMAR R V S S N, KOUTAVARAPU R.Structural, optical, and luminescence properties of Ni2+ doped ZnO⁃CdS nanocomposite: synthesis and investigations for green light emission [J]. Chem. Papers, 2022, 76(1): 557-566. doi: 10.3390/catal12010084http://dx.doi.org/10.3390/catal12010084
LI C G, KUANG X Y, ZHAO Y R, et al. Investigation of the local structure and ZFS parameter for Ni2+ (V2+) ions in zinc fluosilicate at different pressure [J]. Chem. Phys. Lett., 2011, 512(4-6): 263-268. doi: 10.1016/j.cplett.2011.07.031http://dx.doi.org/10.1016/j.cplett.2011.07.031
0
Views
923
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution