浏览全部资源
扫码关注微信
1.宿迁学院 材料工程系, 江苏 宿迁 223800
2.南京理工大学 材料科学与工程学院, 江苏 南京 210094
Published:05 March 2023,
Received:31 May 2022,
Revised:16 June 2022,
扫 描 看 全 文
沈亚龙,韩博宁,靳梓诺等.室温合成具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片[J].发光学报,2023,44(03):508-517.
SHEN Yalong,HAN Boning,JIN Zinuo,et al.Room-temperature Synthesis of Quasi-2D CsPbBr3 Nanoplatelets with Ultrapure Green Light Emissions[J].Chinese Journal of Luminescence,2023,44(03):508-517.
沈亚龙,韩博宁,靳梓诺等.室温合成具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片[J].发光学报,2023,44(03):508-517. DOI: 10.37188/CJL.20220219.
SHEN Yalong,HAN Boning,JIN Zinuo,et al.Room-temperature Synthesis of Quasi-2D CsPbBr3 Nanoplatelets with Ultrapure Green Light Emissions[J].Chinese Journal of Luminescence,2023,44(03):508-517. DOI: 10.37188/CJL.20220219.
通过配体辅助溶液相法,在室温下成功合成出一种具有超纯绿光发射的准二维CsPbBr
3
钙钛矿纳米片。该制备方法可以实现低成本、高质量CsPbBr
3
纳米片的合成。实验结果表明,合成出的CsPbBr
3
纳米片荧光发射峰位于526 nm,发射峰半高宽(FWHM)能够达到16 nm,纳米片的荧光量子效率(PLQY)高达87%。将CsPbBr
3
纳米片应用于背光显示,实现了(0.145, 0.793)的绿光坐标,该色坐标覆盖近91% 的Rec.2020绿光色域,色域范围优于目前报道的绿色荧光粉材料。此外,基于上述CsPbBr
3
荧光纳米片,我们还成功构筑出一种白光LED器件,并测得该器件在20 mA驱动电流下的发光效率为39 lm/W。
A facile ligand-assisted solution process was proposed to synthesize quasi-2D CsPbBr
3
perovskite nanoplatelets (NPs) with ultrapure green photoluminescence (PL) at room temperature. The as-synthesized CsPbBr
3
NPs exhibit an ideal emission peak at 526 nm with a narrow FWHM of 16 nm and a high photoluminescence quantum yield (PLQY) of 87%. As a green downconverter, the CsPbBr
3
NP shows a CIE coordinate at (0.145, 0.793) and covers 91% of the Rec. 2020 standard in the CIE 1931 color space, which was much better than that of all the present green phosphors. Moreover, a WLED was successfully fabricated based on these ultrapure green light-emitting CsPbBr
3
NPs, which exhibits a luminous efficiency 39 lm/W with a CIE (0.33, 0.29) under a 20 mA driving current.
CsPbBr3钙钛矿纳米片超纯绿光白光LED
CsPbBr3 perovskitenanoplateletsultrapure green photoluminescenceWLED
LI C H A, ZHOU Z C, VASHISHTHA P, et al. The future is blue (LEDs): why chemistry is the key to perovskite displays [J]. Chem. Mater., 2019, 31(16): 6003-6032. doi: 10.1021/acs.chemmater.9b01650http://dx.doi.org/10.1021/acs.chemmater.9b01650
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
曾海波, 董宇辉. 钙钛矿量子点: 机遇与挑战 [J]. 发光学报, 2020, 41(8): 940-944. doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
ZENG H B, DONG Y H. Perovskite quantum dots: opportunities and challenges [J]. Chin. J. Lumin., 2020, 41(8): 940-944. (in Chinese). doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
CHEN Q Z, YAN Y J, WU X M, et al. Gate-tunable all-inorganic QLED with enhanced charge injection balance [J]. J. Mater. Chem. C, 2020, 8(4): 1280-1285. doi: 10.1039/c9tc06088jhttp://dx.doi.org/10.1039/c9tc06088j
HOU S C, GANGISHETTY M K, QUAN Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule, 2018, 2(11): 2421-2433. doi: 10.1016/j.joule.2018.08.005http://dx.doi.org/10.1016/j.joule.2018.08.005
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
SHI Z F, LI S, LI Y, et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes [J]. ACS Nano, 2018, 12(2): 1462-1472. doi: 10.1021/acsnano.7b07856http://dx.doi.org/10.1021/acsnano.7b07856
章楼文, 沈少立, 李露颖, 等. 铯铅卤化物钙钛矿型平面异质结LED的应用与发展 [J]. 无机材料学报, 2019, 34(1): 37-48. doi: 10.15541/jim20180176http://dx.doi.org/10.15541/jim20180176
ZHANG L W, SHEN S L, LI L Y, et al. Application and development of cesium lead halide perovskite based planar heterojunction LEDs [J]. J. Inorg. Mater., 2019, 34(1): 37-48. (in Chinese). doi: 10.15541/jim20180176http://dx.doi.org/10.15541/jim20180176
CHEN J W, WANG J, XU X B, et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites [J]. Nat. Photonics, 2021, 15(3): 238-244. doi: 10.1038/s41566-020-00743-1http://dx.doi.org/10.1038/s41566-020-00743-1
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
ZHANG X Y, LIN H, HUANG H, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer [J]. Nano Lett., 2016, 16(2): 1415-1420. doi: 10.1021/acs.nanolett.5b04959http://dx.doi.org/10.1021/acs.nanolett.5b04959
KIM S Y, KANG H, CHANG K, et al. Case studies on structure-property relations in perovskite light-emitting diodes via interfacial engineering with self-assembled monolayers [J]. ACS Appl. Mater. Interfaces, 2021, 13(26): 31236-31247. doi: 10.1021/acsami.1c03797http://dx.doi.org/10.1021/acsami.1c03797
XU F X, CHEN D J, HUANG D C, et al. Suppression of photoinduced phase segregation in mixed-halide perovskite nanocrystals for stable light-emitting diodes [J]. J. Phys. Chem. Lett., 2022, 13(2): 718-725. doi: 10.1021/acs.jpclett.1c03895http://dx.doi.org/10.1021/acs.jpclett.1c03895
ZHANG X T, WANG C C, ZHANG Y, et al. Bright orange electroluminescence from lead-free two-dimensional perovskites [J]. ACS Energy Lett., 2019, 4(1): 242-248. doi: 10.1021/acsenergylett.8b02239http://dx.doi.org/10.1021/acsenergylett.8b02239
LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control [J]. Adv. Mater., 2017, 29(5): 1603885-1-9. doi: 10.1002/adma.201603885http://dx.doi.org/10.1002/adma.201603885
ZHANG D D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. J. Am. Chem. Soc., 2015, 137(29): 9230-9233. doi: 10.1021/jacs.5b05404http://dx.doi.org/10.1021/jacs.5b05404
CAO F, YU D J, GU Y, et al. Novel optoelectronic rotors based on orthorhombic CsPb(Br/I)3 nanorods [J]. Nanoscale, 2019, 11(7): 3117-3122. doi: 10.1039/c8nr06768fhttp://dx.doi.org/10.1039/c8nr06768f
ZHANG J, YANG X K, DENG H, et al. Low-dimensional halide perovskites and their advanced optoelectronic applications [J]. Nano⁃Micro Lett., 2017, 9(3): 36-1-26. doi: 10.1007/s40820-017-0137-5http://dx.doi.org/10.1007/s40820-017-0137-5
WU Y, WEI C T, LI X M, et al. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield [J]. ACS Energy Lett., 2018, 3(9): 2030-2037. doi: 10.1021/acsenergylett.8b01025http://dx.doi.org/10.1021/acsenergylett.8b01025
STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden⁃Popper hybrid lead iodide perovskite 2D homologous semiconductors [J]. Chem. Mater., 2016, 28(8): 2852-2867. doi: 10.1021/acs.chemmater.6b00847http://dx.doi.org/10.1021/acs.chemmater.6b00847
NASILOWSKI M, MAHLER B, LHUILLIER E, et al. Two-dimensional colloidal nanocrystals [J]. Chem. Rev., 2016, 116(18): 10934-10982. doi: 10.1021/acs.chemrev.6b00164http://dx.doi.org/10.1021/acs.chemrev.6b00164
KUMAR S, JAGIELSKI J, KALLIKOUNIS N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates [J]. Nano Lett., 2017, 17(9): 5277-5284. doi: 10.1021/acs.nanolett.7b01544http://dx.doi.org/10.1021/acs.nanolett.7b01544
YU D J, CAO F, GAO Y J, et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays [J]. Adv. Funct. Mater., 2018, 28(19): 1800248-1-8. doi: 10.1002/adfm.201800248http://dx.doi.org/10.1002/adfm.201800248
QIN H Y, NIU Y, MENG R Y, et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements [J]. J. Am. Chem. Soc., 2014, 136(1): 179-187. doi: 10.1021/ja4078528http://dx.doi.org/10.1021/ja4078528
JEONG K S, GUYOT-SIONNEST P. Mid-infrared photoluminescence of CdS and CdSe colloidal quantum dots [J]. ACS Nano, 2016, 10(2): 2225-2231. doi: 10.1021/acsnano.5b06882http://dx.doi.org/10.1021/acsnano.5b06882
PRIANTE D, DURSUN I, ALIAS M S, et al. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites [J]. Appl. Phys. Lett., 2015, 106(8): 081902-1-4. doi: 10.1063/1.4913463http://dx.doi.org/10.1063/1.4913463
DEY P, PAUL J, BYLSMA J, et al. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots [J]. Solid State Commun., 2013, 165: 49-54. doi: 10.1016/j.ssc.2013.04.022http://dx.doi.org/10.1016/j.ssc.2013.04.022
LIU M, ZHONG G H, YIN Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight [J]. Adv. Sci., 2017, 4(11): 1700335-1-8. doi: 10.1002/advs.201700335http://dx.doi.org/10.1002/advs.201700335
LI C L, ZANG Z G, CHEN W W, et al. Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes [J]. Opt. Express, 2016, 24(13): 15071-15078. doi: 10.1364/oe.24.015071http://dx.doi.org/10.1364/oe.24.015071
YAN D D, ZHAO S Y, WANG H X, et al. Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots [J]. Photonics Res., 2020, 8(7): 1086-1092. doi: 10.1364/prj.391703http://dx.doi.org/10.1364/prj.391703
ZHANG Q G, SUN X C, ZHENG W L, et al. Band gap engineering toward wavelength tunable CsPbBr3 nanocrystals for achieving Rec. 2020 displays [J]. Chem. Mater., 2021, 33(10): 3575-3584. doi: 10.1021/acs.chemmater.1c00145http://dx.doi.org/10.1021/acs.chemmater.1c00145
QIU L, YANG H, DAI Z G, et al. Highly efficient and stable CsPbBr3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs [J]. Inorg. Chem. Front, 2020, 7(10): 2060-2071. doi: 10.1039/d0qi00208ahttp://dx.doi.org/10.1039/d0qi00208a
SUN Y, LI Y N, ZHANG W Y, et al. Simultaneous synthesis, modification, and DFT calculation of three-color lead halide perovskite phosphors for improving stability and luminous efficiency of WLEDs [J]. Adv. Optical. Mater., 2022, 10(2): 2101765-1-14. doi: 10.1002/adom.202101765http://dx.doi.org/10.1002/adom.202101765
LIU Y, SHI B F, LIU Q, et al. Large-scale synthesis of layered double hydroxide nanosheet-stabilized CsPbBr3 perovskite quantum dots for WLEDs [J]. J. Alloys Compd., 2020, 843: 155819-1-9. doi: 10.1016/j.jallcom.2020.155819http://dx.doi.org/10.1016/j.jallcom.2020.155819
LI S, SHI Z F, ZHANG F, et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices [J]. Chem. Mater., 2019, 31(11): 3917-3928. doi: 10.1021/acs.chemmater.8b05362http://dx.doi.org/10.1021/acs.chemmater.8b05362
MO Q H, CHEN C, CAI W S, et al. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication [J]. Laser Photonics Rev., 2021, 15(10): 2100278-1-9. doi: 10.1002/lpor.202100278http://dx.doi.org/10.1002/lpor.202100278
EROL E, VAHEDIGHAREHCHOPOGH N, EKIM U, et al. Ultra-stable Eu3+/Dy3+ co-doped CsPbBr3 quantum dot glass nanocomposites with tunable luminescence properties for phosphor-free WLED applications [J]. J. Alloys Compd., 2022, 909: 164650-1-8. doi: 10.1016/j.jallcom.2022.164650http://dx.doi.org/10.1016/j.jallcom.2022.164650
0
Views
448
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution