浏览全部资源
扫码关注微信
1.内蒙古师范大学 物理与电子信息学院, 内蒙古 呼和浩特 010022
2.内蒙古师范大学 内蒙古自治区功能材料物理与化学重点实验室, 内蒙古 呼和浩特 010022
3.内蒙古自治区新能源储能材料工程研究中心, 内蒙古 呼和浩特 010022
Published:05 August 2022,
Received:30 May 2022,
Revised:09 June 2022,
扫 描 看 全 文
王新然,王凤翔,廖雨等.自激活LiSr2Ca2(BN2)3荧光粉的合成与发光性能[J].发光学报,2022,43(08):1227-1235.
WANG Xin-ran,WANG Feng-xiang,LIAO Yu,et al.Synthesis and Luminescent Properties of Self-activated LiSr2Ca2(BN2)3 Phosphor[J].Chinese Journal of Luminescence,2022,43(08):1227-1235.
王新然,王凤翔,廖雨等.自激活LiSr2Ca2(BN2)3荧光粉的合成与发光性能[J].发光学报,2022,43(08):1227-1235. DOI: 10.37188/CJL.20220217.
WANG Xin-ran,WANG Feng-xiang,LIAO Yu,et al.Synthesis and Luminescent Properties of Self-activated LiSr2Ca2(BN2)3 Phosphor[J].Chinese Journal of Luminescence,2022,43(08):1227-1235. DOI: 10.37188/CJL.20220217.
自激活发光受到了研究人员的广泛关注,其中硼氮化物缺陷发光材料因毒性低、合成简单、结构多样性等优点,具有成为新一代LED用荧光粉的潜力,但是低热稳定性限制了其实际应用。本文采用高温固相一步法,通过部分取代LiSr
4
(BN
2
)
3
(LSBN)中的Sr,合成了一种新的LiSr
2
Ca
2
(BN
2
)
3
(LSCBN)发光材料。采用X射线衍射仪、扫描电子显微镜和荧光光谱仪对荧光粉的相组成、形貌和光学性质进行了表征。结果表明,所制备的样品LSBN为立方晶系,空间群
Im‐3m
。在紫外区域有较宽的激发带,发射光谱峰值位于561 nm,半峰宽度(FWHM)约为4 504 cm
-1
。LSCBN的发光强度是LSBN的的2倍。解释了LSCBN的发光机理,LSCBN荧光粉中存在替代式缺陷,在光激励下形成发光中心。变温光谱显示,150 ℃时,LSBN的发光强度为初始强度的17%,LSCBN的发光强度为初始强度的57%,超过了已报道的其他硼氮化物荧光粉。这种离子取代的方法能有效调控发光波长和增强荧光强度,改善热稳定性,为硼氮化物缺陷材料发光性能的改善提供了新的思路和应用前景。
Self-activated phosphors have received a lot of attention from researchers, among which nitridoborate defect phosphors have the potential to become a new generation of phosphors for LEDs due to low toxicity, simple synthesis, and structural diversity, but low thermal stability limits their practical applications. In this paper, a new LiSr
2
Ca
2
(BN
2
)
3
(LSCBN) phosphor was synthesized by partially replacing Sr in LiSr
4
(BN
2
)
3
(LSBN) using a high-temperature solid-phase one-step method. The phase composition, morphology, and optical properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrometry. The results show that the prepared sample LSBN is a cubic crystal system with the space group
Im‐3m
. It has a wide excitation band in the UV region, the peak of the emission spectrum is located at 561 nm, and the full width at half maximum(FWHM) is about 4 504 cm
-1
. The luminescence intensity of a LSCBN is twice that of a LSBN. In LSCBN, the partial replacement of Sr by Ca introduces substitutional defects that form new luminescence centers. In the temperature dependence PL spectra, the intensity of LSBN at 150 ℃ is 17% of the initial value, and LSCBN can maintain 57% of the initial intensity at 150 ℃, which exceeds other nitridoborate phosphors that have been reported. This ion-substitution method can effectively regulate the luminescence wavelength and enhance the luminous intensity, improve the thermal stability, and provide a new idea and application prospect for the improvement of the luminescence performance of defect-related nitridoborate phosphors.
硼氮化物缺陷发光材料阳离子取代发光机理
nitridoboratedefect-related phosphorcation substitutionluminescence mechanism
沈超, 邵起越, 韩学林, 等. 白光LED用Ca8Mg(SiO4)Cl2∶Eu2+,Dy3+发光粉的发光性能 [J]. 发光学报, 2010, 31(1): 44-48.
SHEN C, SHAO Q Y, HAN X L, et al. Luminescent properties of Ca8Mg(SiO4)4Cl2∶Eu2+,Dy3+ phosphor for white LED [J]. Chin. J. Lumin., 2010, 31(1): 44-48. (in Chinese)
LAZAROWSKA A, MAHLIK S, GRINBERG M, et al. Pressure dependence of the Sr2Si5N8∶Eu2+ luminescence [J]. J. Lumin., 2015, 159: 183-187. doi: 10.1016/j.jlumin.2014.11.026http://dx.doi.org/10.1016/j.jlumin.2014.11.026
XIE R J, HIROSAKI N, TAKEDA T. Highly reliable white LEDs using nitride phosphors [J]. J. Korean Ceram. Soc., 2012, 49(4): 375-379. doi: 10.4191/kcers.2012.49.4.375http://dx.doi.org/10.4191/kcers.2012.49.4.375
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives [J]. Chem. Rev., 2018, 118(4): 1951-2009. doi: 10.1021/acs.chemrev.7b00284http://dx.doi.org/10.1021/acs.chemrev.7b00284
LIN C C, LIU R S. Advances in phosphors for light-emitting diodes [J]. J. Phys. Chem. Lett., 2011, 2(11): 1268-1277. doi: 10.1021/jz2002452http://dx.doi.org/10.1021/jz2002452
PAN Y X, WU M M, SU Q. Comparative investigation on synthesis and photoluminescence of YAG∶Ce phosphor [J]. Mater. Sci. Eng. B, 2004, 106(3): 251-256. doi: 10.1016/j.mseb.2003.09.031http://dx.doi.org/10.1016/j.mseb.2003.09.031
LEI B F, MACHIDA K I, HORIKAWA T, et al. Synthesis and photoluminescence properties of CaAlSiN3∶Eu2+ nanocrystals [J]. Chem. Lett., 2010, 39(2): 104-105. doi: 10.1246/cl.2010.104http://dx.doi.org/10.1246/cl.2010.104
XIE F, ZHANG T A, DREISINGER D, et al. A critical review on solvent extraction of rare earths from aqueous solutions [J]. Miner. Eng., 2014, 56: 10-28. doi: 10.1016/j.mineng.2013.10.021http://dx.doi.org/10.1016/j.mineng.2013.10.021
OGI T, KAIHATSU Y, ISKANDAR F, et al. Facile synthesis of new full-color-emitting BCNO phosphors with high quantum efficiency [J]. Adv. Mater., 2008, 20(17): 3235-3238. doi: 10.1002/adma.200702551http://dx.doi.org/10.1002/adma.200702551
YOLDAS B E. Thermochemically induced photoluminescence in sol-gel-derived oxide networks [J]. J. Non⁃Cryst. Solids, 1992, 147-148: 614-620. doi: 10.1016/s0022-3093(05)80686-6http://dx.doi.org/10.1016/s0022-3093(05)80686-6
ZHANG W J, WU X L, FAN J Y, et al. Luminescent amorphous alumina nanoparticles in toluene solution [J]. J. Phys. Condens. Matter, 2006, 18(43): 9937-9942. doi: 10.1088/0953-8984/18/43/015http://dx.doi.org/10.1088/0953-8984/18/43/015
KUANG S P, MENG Y, LIU J, et al. A new self-activated yellow-emitting phosphor Zn2V2O7 for white LED [J]. Optik, 2013, 124(22): 5517-5519. doi: 10.1016/j.ijleo.2013.03.172http://dx.doi.org/10.1016/j.ijleo.2013.03.172
BHARAT L K, JEON S K, KRISHNA K G, et al. Rare-earth free self-luminescent Ca2KZn2(VO4)3 phosphors for intense white light-emitting diodes [J]. Sci. Rep., 2017, 7: 42348-1-9. doi: 10.1038/srep42348http://dx.doi.org/10.1038/srep42348
HUANG Y L, YU Y M, TSUBOI T, et al. Novel yellow-emitting phosphors of Ca5M4 (VO4)6 (M= Mg, Zn) with isolated VO4 tetrahedra [J]. Opt. Express, 2012, 20(4): 4360-4368. doi: 10.1364/oe.20.004360http://dx.doi.org/10.1364/oe.20.004360
BLASCHKOWSKI B, JING H P, MEYER H J. Nitridoborates of the lanthanides: synthesis, structure principles, and properties of a new class of compounds [J]. Angew. Chem. Int. Ed., 2002, 41(18): 3322-3336. doi: 10.1002/1521-3773(20020916)41:18<3322::aid-anie3322>3.0.co;2-8http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3322::aid-anie3322>3.0.co;2-8
马一智, 李响, 胡大海, 等. Sr3(BN2)2荧光粉的合成与发光性能 [J]. 发光学报, 2021, 42(4): 470-477.
MA Y Z, LI X, HU D H, et al. Synthesis and luminescence properties of Sr3(BN2)2 phosphor [J]. Chin. J. Lumin., 2021, 42(4): 470-477. (in Chinese)
LI J Y, DING J Y, MA B, et al. Design and research of a self-activated orange magnesium boron nitride phosphor with its application in W-LEDs [J]. Dalton Trans., 2018, 47(43): 15439-15447. doi: 10.1039/c8dt03438ahttp://dx.doi.org/10.1039/c8dt03438a
DING J Y, WU Q S, LI Y Y, et al. Self-activated yellow light emitting phosphors of α, β-Ca3B2N4 with long afterglow properties [J]. Inorg. Chem., 2016, 55(21): 10990-10998. doi: 10.1021/acs.inorgchem.6b01480http://dx.doi.org/10.1021/acs.inorgchem.6b01480
MA B, DING J Y, LONG Q, et al. The mechanism of N-vacancy defects self-activated light emitting based on CaMg2N2 [J]. J. Lumin., 2019, 208: 388-393. doi: 10.1016/j.jlumin.2019.01.002http://dx.doi.org/10.1016/j.jlumin.2019.01.002
SOMER M, HERTERICH U, CURDA J, et al. Crystal structure of lithium tetracalcium tris (dinitridoborate), LiCa4(BN2)3 [J]. Z. Krist‐Cryst. Mater., 1994, 209(2): 182.
SOMER M, HERTERICH U, CURDA J, et al. Crystal structure of lithium tetrastrontium tris (dinitridoborate), LiSr4(BN2)3 [J]. Z. Krist‐Cryst. Mater., 1996, 211(1): 54.
CURDA J, HERTERICH U, PETERS K, et al. Crystal structure of lithium tetraeuropium tris (dinitridoborate), LiEu4(BN2)3 [J]. Z. Krist⁃Cryst. Mater., 1994, 209(7): 618.
SOMER M, HERTERICH U, ČURDA J, et al. Darstellung, Kristallstrukturen und Schwingungsspektren neuer ternärer Verbindungen mit dem Anion [N⁃B⁃N]3- [J]. Z. Anorg. Allg. Chem., 2000, 626(3): 625-633. doi: 10.1002/(sici)1521-3749(200003)626:3<625::aid-zaac625>3.0.co;2-4http://dx.doi.org/10.1002/(sici)1521-3749(200003)626:3<625::aid-zaac625>3.0.co;2-4
PÖTTGEN R, RECKEWEG O. The [BN2]3- anion—a carbon dioxide isosteric building unit for a large family of complex nitridoborate structures [J]. Z. Krist⁃Cryst. Mater., 2017, 232(10): 653-668. doi: 10.1515/zkri-2017-2043http://dx.doi.org/10.1515/zkri-2017-2043
LONG Q, WANG C, DING J Y, et al. Synthesis and luminescence properties of a novel red-emitting LiSr4(BN2)3∶Eu2+ phosphor [J]. Dalton Trans., 2015, 44(32): 14507-14513. doi: 10.1039/c5dt02368hhttp://dx.doi.org/10.1039/c5dt02368h
SOMER M, HERTERICH U, CURDA J, et al. Crystal structure of lithium tetracalcium tris (dinitridoborate), LiCa4‐(BN2)3 [J]. Z. Krist⁃Cryst. Mater., 1994, 209(2): 182.
VAROTSOS P, ALEXOPOULOS K. On the possibility of the enthalpy of a Schottky defect decreasing with increasing temperature [J]. J. Phys. C Solid State Phys., 1979, 12(19): L761-L764. doi: 10.1088/0022-3719/12/19/004http://dx.doi.org/10.1088/0022-3719/12/19/004
CLABAU F, ROCQUEFELTE X, LE MERCIER T, et al. Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration [J]. Chem. Mater., 2006, 18(14): 3212-3220. doi: 10.1021/cm052728qhttp://dx.doi.org/10.1021/cm052728q
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
WANG Y H, DING J Y, WANG Y C, et al. Structural design of new Ce3+/Eu2+ doped or co-doped phosphors with excellent thermal stabilities for WLEDs [J]. J. Mater. Chem.C, 2019, 7(7): 1792-1820. doi: 10.1039/c8tc06013dhttp://dx.doi.org/10.1039/c8tc06013d
BHUSHAN S, CHUKICHEV M V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals [J]. J. Mater. Sci. Lett., 1988, 7(4): 319-321. doi: 10.1007/bf01730729http://dx.doi.org/10.1007/bf01730729
DING J Y, WU Q S, LI Y Y, et al. α-M3B2N4(M=Ca, Sr)∶Eu3+: a nitride-based red phosphor with a sharp emission line and broad excitation band used for WLED [J]. J. Phys. Chem. C, 2017, 121(18): 10102-10111. doi: 10.1021/acs.jpcc.7b01945http://dx.doi.org/10.1021/acs.jpcc.7b01945
0
Views
151
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution