浏览全部资源
扫码关注微信
太原理工大学 物理与光电工程学院, 山西 太原 030024
Published:05 October 2022,
Received:25 May 2022,
Revised:09 June 2022,
扫 描 看 全 文
魏衍福,李国辉,潘登等.通向钙钛矿电泵浦激光的研究进展[J].发光学报,2022,43(10):1478-149410.37188/CJL.20220209.
WEI Yan-fu,LI Guo-hui,PAN Deng,et al.Research Progress Towards Perovskite Electrical Driven Lasers[J].Chinese Journal of Luminescence,2022,43(10):1478-149410.37188/CJL.20220209.
可溶液法制备的钙钛矿拥有优异的光学、电学性能,是一类极具潜力的电泵浦激光增益介质。近年来,基于钙钛矿材料的室温连续光泵浦激光以及大电流电致发光器件陆续被报道,在通向钙钛矿电泵浦激光的研究上取得了可喜进展,本文以此为主题展开综述。首先,介绍了钙钛矿材料实现电泵浦激光的优势。接着,梳理了现阶段通向钙钛矿电泵浦激光的两大问题,即非辐射复合损耗高和热效应严重,同时给出了改善这两大问题可采取的一些有效策略。然后,给出了电荷注入平衡化、降低光学损耗、促进粒子数反转等补充手段,它们有力推动了通向钙钛矿电泵浦激光研究向前发展。此外,还介绍了钙钛矿表面等离激元激光、钙钛矿激子极化激元激光等有望实现低阈值钙钛矿电泵浦激光的新机制。最后,总结全文,并对电泵浦钙钛矿激光未来研究做出了展望。
Solution-processed perovskites, having excellent optical and electrical properties, can serve as a kind of promising electrically driven laser gain medium. In recent years, progresses towards electrically driven lasers based on perovskite materials have been made. For instance, a series of room-temperature continuous-wave optically-pumped perovskite lasers along with a few high-current perovskite light emitting diodes(LEDs) have been reported. This paper takes this topic as the review subject. Firstly, the advantages of perovskite materials for developing electrical driven lasers are introduced. Then, the two major constraints towards electrical driven perovskite lasers at the present stage, including high non-radiative recombination loss and serious thermal effect, are introduced, and some strategies to break through these constraints are given. Subsequently, this paper gives supplementary means such as balancing the charge injection, reducing optical loss, and promoting population inversion, which have effectively promoted the development of perovskite electrical pumped laser research. This paper also introduces the recent progresses of surface plasmon polariton lasers, exciton polariton lasers,
etc
., based on perovskite materials, which possess the potential to reduce the laser thresholds, as alternatives for realizing electrical driven perovskite lasers. Finally, the full text is summarized, and the future research towards electrical driven perovskite lasers is prospected.
钙钛矿激光器电泵浦激光阈值
perovskitelaserelectrical drivenlasing threshold
ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7http://dx.doi.org/10.1038/s41586-019-1008-7
JEWELL J L, MCCALL S L, LEE Y H, et al. Optical computing and related microoptic devices [J]. Appl. Opt., 1990, 29(34): 5050-5053. doi: 10.1364/ao.29.005050http://dx.doi.org/10.1364/ao.29.005050
HILL M T, DORREN H J S, DE VRIES T, et al. A fast low-power optical memory based on coupled micro-ring lasers [J]. Nature, 2004, 432(7014): 206-209. doi: 10.1038/nature03045http://dx.doi.org/10.1038/nature03045
纪兴启, 李国辉, 崔艳霞, 等. 有机-无机杂化钙钛矿激光器的研究进展 [J]. 半导体技术, 2018, 43(6): 401-413. doi: 10.13290/j.cnki.bdtjs.2018.06.001http://dx.doi.org/10.13290/j.cnki.bdtjs.2018.06.001
JI X Q, LI G H, CUI Y X, et al. Research progress in organic-inorganic hybridized perovskite lasers [J]. Semicond. Technol., 2018, 43(6): 401-413. (in Chinese). doi: 10.13290/j.cnki.bdtjs.2018.06.001http://dx.doi.org/10.13290/j.cnki.bdtjs.2018.06.001
韩悦, 李国辉, 梁强兵, 等. 全无机钙钛矿CsPbX3纳米晶的研究进展 [J]. 发光学报, 2020, 41(5): 542-556. doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
HAN Y, LI G H, LIANG Q B, et al. Advances of all-inorganic perovskite CsPbX3 nanocrystals [J]. Chin. J. Lumin., 2020, 41(5): 542-556. (in Chinese). doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
XING G C, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing [J]. Nat. Mater., 2014, 13(5): 476-480. doi: 10.1038/nmat3911http://dx.doi.org/10.1038/nmat3911
LI G H, CHE T, JI X Q, et al. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite [J]. Adv. Funct. Mater., 2019, 29(2): 1805553. doi: 10.1002/adfm.201805553http://dx.doi.org/10.1002/adfm.201805553
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271http://dx.doi.org/10.1038/nmat4271
HARWELL J R, WHITWORTH G L, TURNBULL G A, et al. Green perovskite distributed feedback lasers [J]. Sci. Rep., 2017, 7(1): 11727-1-8. doi: 10.1038/s41598-017-11569-3http://dx.doi.org/10.1038/s41598-017-11569-3
CHEN S T, ZHANG C, LEE J, et al. High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers [J]. Adv. Mater., 2017, 29(16): 1604781-1-8. doi: 10.1002/adma.201604781http://dx.doi.org/10.1002/adma.201604781
周博林, 李国辉, 吴建红, 等. 低阈值钙钛矿光子晶体激光器 [J]. 激光与光电子学进展, 2022, 59(5): 0500005-1-16. doi: 10.3788/lop202259.0500005http://dx.doi.org/10.3788/lop202259.0500005
ZHOU B L, LI G H, WU J H, et al. Perovskite photonic crystal laser with low threshold [J]. Laser Optoelectron. Prog., 2022, 59(5): 0500005-1-16. (in Chinese). doi: 10.3788/lop202259.0500005http://dx.doi.org/10.3788/lop202259.0500005
WANG K Y, XING G C, SONG Q H, et al. Micro-and nanostructured lead halide perovskites: from materials to integrations and devices [J]. Adv. Mater., 2021, 33(6): 2000306-1-19. doi: 10.1002/adma.202000306http://dx.doi.org/10.1002/adma.202000306
QIN C J, SANDANAYAKA A S D, ZHAO C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585(7823): 53-57. doi: 10.1038/s41586-020-2621-1http://dx.doi.org/10.1038/s41586-020-2621-1
EVANS T J S, SCHLAUS A, FU Y P, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires [J]. Adv. Opt. Mater., 2018, 6(2): 1700982-1-7. doi: 10.1002/adom.201700982http://dx.doi.org/10.1002/adom.201700982
SHANG Q Y, LI M L, ZHAO L Y, et al. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser [J]. Nano Lett., 2020, 20(9): 6636-6643. doi: 10.1021/acs.nanolett.0c02462http://dx.doi.org/10.1021/acs.nanolett.0c02462
SAMUEL I D W, TURNBULL G A. Organic semiconductor lasers [J]. Chem. Rev., 2007, 107(4): 1272-1295. doi: 10.1021/cr050152ihttp://dx.doi.org/10.1021/cr050152i
CHO C, ANTRACK T, KROLL M, et al. Electrical pumping of perovskite diodes: toward stimulated emission [J]. Adv. Sci., 2021, 8(17): 2101663-1-9. doi: 10.1002/advs.202101663http://dx.doi.org/10.1002/advs.202101663
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
SHI Z F, LI S, LI Y, et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes [J]. ACS Nano, 2018, 12(2): 1462-1472. doi: 10.1021/acsnano.7b07856http://dx.doi.org/10.1021/acsnano.7b07856
ZHAO L F, ROH K, KACMOLI S, et al. Nanosecond-pulsed perovskite light-emitting diodes at high current density [J]. Adv. Mater., 2021, 33(44): 2104867-1-11. doi: 10.1002/adma.202104867http://dx.doi.org/10.1002/adma.202104867
LIAN Z P, YAN Q F, GAO T T, et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3 [J]. J. Am. Chem. Soc., 2016, 138(30): 9409-9412. doi: 10.1021/jacs.6b05683http://dx.doi.org/10.1021/jacs.6b05683
DENG S B, SHI E Z, YUAN L, et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites [J]. Nat. Commun., 2020, 11(1): 664-1-8. doi: 10.1038/s41467-020-14403-zhttp://dx.doi.org/10.1038/s41467-020-14403-z
BECKER M A, VAXENBURG R, NEDELCU G, et al. Bright triplet excitons in caesium lead halide perovskites [J]. Nature, 2018, 553(7687): 189-193. doi: 10.1038/nature25147http://dx.doi.org/10.1038/nature25147
YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths [J]. Nano Lett., 2016, 16(8): 4838-4848. doi: 10.1021/acs.nanolett.6b01168http://dx.doi.org/10.1021/acs.nanolett.6b01168
LI M L, SHANG Q Y, LI C, et al. High optical gain of solution-processed mixed-cation CsPbBr3 thin films towards enhanced amplified spontaneous emission [J]. Adv. Funct. Mater., 2021, 31(25): 2102210-1-8. doi: 10.1002/adfm.202102210http://dx.doi.org/10.1002/adfm.202102210
BRENNER P, BAR-ON O, JAKOBY M, et al. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites [J]. Nat. Commun., 2019, 10(1): 988-1-7. doi: 10.1038/s41467-019-08929-0http://dx.doi.org/10.1038/s41467-019-08929-0
KIM H, ZHAO L F, PRICE J S, et al. Hybrid perovskite light emitting diodes under intense electrical excitation [J]. Nat. Commun., 2018, 9(1): 4893-1-9. doi: 10.1038/s41467-018-07383-8http://dx.doi.org/10.1038/s41467-018-07383-8
ZHAO L F, ROH K, KACMOLI S, et al. Thermal management enables bright and stable perovskite light-emitting diodes [J]. Adv. Mater., 2020, 32(25): 2000752-1-7. doi: 10.1002/adma.202000752http://dx.doi.org/10.1002/adma.202000752
QIN J J, LIU X K, YIN C Y, et al. Carrier dynamics and evaluation of lasing actions in halide perovskites [J]. Trends Chem., 2021, 3(1): 34-46. doi: 10.1016/j.trechm.2020.10.010http://dx.doi.org/10.1016/j.trechm.2020.10.010
YE J Z, BYRANVAND M M, MARTÍNEZ C O, et al. Defect passivation in lead‐halide perovskite nanocrystals and thin films: toward efficient leds and solar cells [J]. Angew. Chem. Int. Ed., 2021, 133(40): 21804-21828. doi: 10.1002/ange.202102360http://dx.doi.org/10.1002/ange.202102360
车韬, 李国辉, 冀婷, 等. 有机-无机杂化钙钛矿光电子器件的钝化技术研究进展 [J]. 半导体技术, 2019, 44(10): 745-754.
CHE T, LI G H, JI T, et al. Research progress of passivation technology of organic-inorganic hybrid perovskite optoelectronic devices [J]. Semicond. Technol., 2019, 44(10): 745-754. (in Chinese)
ABDI-JALEBI M, ANDAJI-GARMAROUDI Z, CACOVICH S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J]. Nature, 2018, 555(7697): 497-501. doi: 10.1038/nature25989http://dx.doi.org/10.1038/nature25989
KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment [J]. J. Am. Chem. Soc., 2017, 139(19): 6566-6569. doi: 10.1021/jacs.7b02817http://dx.doi.org/10.1021/jacs.7b02817
ZOU C, LIU Y, GINGER D S, et al. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes [J]. ACS Nano, 2020, 14(5): 6076-6086. doi: 10.1021/acsnano.0c01817http://dx.doi.org/10.1021/acsnano.0c01817
STAUB F, HEMPEL H, HEBIG J C, et al. Beyond bulk lifetimes: Insights into lead halide perovskite films from time-resolved photoluminescence [J]. Phys. Rev. Appl., 2016, 6(4): 044017. doi: 10.1103/physrevapplied.6.044017http://dx.doi.org/10.1103/physrevapplied.6.044017
HERZ L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites [J]. Annu. Rev. Phys. Chem., 2016, 67(1): 65-89. doi: 10.1146/annurev-physchem-040215-112222http://dx.doi.org/10.1146/annurev-physchem-040215-112222
LEYDEN M R, TERAKAWA S, MATSUSHIMA T, et al. Distributed feedback lasers and light-emitting diodes using 1-naphthylmethylamnonium low-dimensional perovskite [J]. ACS Photonics, 2019, 6(2): 460-466. doi: 10.1021/acsphotonics.8b01413http://dx.doi.org/10.1021/acsphotonics.8b01413
EVEN J, PEDESSEAU L, JANCU J M, et al. Importance of spin‐orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications [J]. J. Phys. Chem. Lett., 2013, 4(17): 2999-3005. doi: 10.1021/jz401532qhttp://dx.doi.org/10.1021/jz401532q
MARKO I P, BATOOL Z, HILD K, et al. Temperature and Bi-concentration dependence of the bandgap and spin-orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications [J]. Appl. Phys. Lett., 2012, 101(22): 221108-1-5. doi: 10.1063/1.4768532http://dx.doi.org/10.1063/1.4768532
SHEN J X, ZHANG X, DAS S, et al. Unexpectedly strong auger recombination in halide perovskites [J]. Adv. Energy Mater., 2018, 8(30): 1801027-1-7. doi: 10.1002/aenm.201801027http://dx.doi.org/10.1002/aenm.201801027
KEPENEKIAN M, EVEN J. Rashba and dresselhaus couplings in halide perovskites: accomplishments and opportunities for spintronics and spin‐orbitronics [J]. J. Phys. Chem. Lett., 2017, 8(14): 3362-3370. doi: 10.1021/acs.jpclett.7b01015http://dx.doi.org/10.1021/acs.jpclett.7b01015
ŠČAJEV P, LITVINAS D, SORIU̅TĖ V, et al. Crystal structure ideality impact on bimolecular, auger, and diffusion coefficients in mixed-cation CsxMA1–xPbBr3 and CsxFA1–xPbBr3 perovskites [J]. J. Phys. Chem. C, 2019, 123(39): 23838-23844. doi: 10.1021/acs.jpcc.9b05824http://dx.doi.org/10.1021/acs.jpcc.9b05824
JIANG Y Z, CUI M H, LI S S, et al. Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 336-1-10. doi: 10.1038/s41467-020-20555-9http://dx.doi.org/10.1038/s41467-020-20555-9
YANG Y, YANG M J, LI Z, et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy [J]. J. Phys. Chem. Lett., 2015, 6(23): 4688-4692. doi: 10.1021/acs.jpclett.5b02290http://dx.doi.org/10.1021/acs.jpclett.5b02290
FUJIWARA K, ZHANG S, TAKAHASHI S, et al. Excitation dynamics in layered lead halide perovskite crystal slabs and microcavities [J]. ACS Photonics, 2020, 7(3): 845-852. doi: 10.1021/acsphotonics.0c00038http://dx.doi.org/10.1021/acsphotonics.0c00038
TANAKA K, TAKAHASHI T, KONDO T, et al. Electronic and excitonic structures of inorganic‐organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4 [J]. Jpn. J. Appl. Phys., 2005, 44(8): 5923-5932. doi: 10.1143/jjap.44.5923http://dx.doi.org/10.1143/jjap.44.5923
QIN C J, MATSUSHIMA T, POTSCAVAGE W J, et al. Triplet management for efficient perovskite light-emitting diodes [J]. Nat. Photonics, 2020, 14(2): 70-75. doi: 10.1038/s41566-019-0545-9http://dx.doi.org/10.1038/s41566-019-0545-9
PISONI A, JAĆIMOVIĆ J, BARIŠIĆ O S, et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3 [J]. J. Phys. Chem. Lett., 2014, 5(14): 2488-2492. doi: 10.1021/jz5012109http://dx.doi.org/10.1021/jz5012109
YAMAOKA S, DIAMANTOPOULOS N P, NISHI H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate [J]. Nat. Photonics, 2020, 15(1): 28-35. doi: 10.1038/s41566-020-00700-yhttp://dx.doi.org/10.1038/s41566-020-00700-y
MILOT R L, EPERON G E, SNAITH H J, et al. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films [J]. Adv. Funct. Mater., 2015, 25(39): 6218-6227. doi: 10.1002/adfm.201502340http://dx.doi.org/10.1002/adfm.201502340
ALLEGRO I, LI Y, RICHARDS B S, et al. Bimolecular and auger recombination in phase-stable perovskite thin films from cryogenic to room temperature and their effect on the amplified spontaneous emission threshold [J]. J. Phys. Chem. Lett., 2021, 12(9): 2293-2298. doi: 10.1021/acs.jpclett.1c00099http://dx.doi.org/10.1021/acs.jpclett.1c00099
JIA Y F, KERNER R A, GREDE A J, et al. Factors that limit continuous-wave lasing in hybrid perovskite semiconductors [J]. Adv. Opt. Mater., 2020, 8(2): 1901514-1-8. doi: 10.1002/adom.201901514http://dx.doi.org/10.1002/adom.201901514
CADELANO M, SARRITZU V, SESTU N, et al. Can trihalide lead perovskites support continuous wave lasing? [J]. Adv. Opt. Mater., 2015, 3(11): 1557-1564. doi: 10.1002/adom.201500229http://dx.doi.org/10.1002/adom.201500229
JIA Y F, KERNER R A, GREDE A J, et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator [J]. Nano Lett., 2016, 16(7): 4624-4629. doi: 10.1021/acs.nanolett.6b01946http://dx.doi.org/10.1021/acs.nanolett.6b01946
MI Y, ZHONG Y G, ZHANG Q, et al. Continuous-wave pumped perovskite lasers [J]. Adv. Opt. Mater., 2019, 7(17): 1900544. doi: 10.1002/adom.201900544http://dx.doi.org/10.1002/adom.201900544
LI G, CHEN K, CUI Y, et al. Stability of perovskite light sources: status and challenges [J]. Adv. Opt. Mater., 2020, 8(6): 1902012-1-7. doi: 10.1002/adom.201902012http://dx.doi.org/10.1002/adom.201902012
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPbX3热稳定性研究进展 [J]. 发光学报, 2020, 41(8): 926-939. doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
LIAN H W, KANG R, CHEN X Z, et al. Research progress on thermal stability of all inorganic perovskite CsPbX3 [J]. Chin. J. Lumin., 2020, 41(8): 926-939. (in Chinese). doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
LI B B, LI Y F, ZHENG C Y, et al. Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches [J]. RSC Adv., 2016, 6(44): 38079-38091. doi: 10.1039/c5ra27424ahttp://dx.doi.org/10.1039/c5ra27424a
MISRA R K, AHARON S, LI B L, et al. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight [J]. J. Phys. Chem. Lett., 2015, 6(3): 326-330. doi: 10.1021/jz502642bhttp://dx.doi.org/10.1021/jz502642b
FAN Z, XIAO H, WANG Y L, et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates [J]. Joule, 2017, 1(3): 548-562. doi: 10.1016/j.joule.2017.08.005http://dx.doi.org/10.1016/j.joule.2017.08.005
LI G H, PI H H, WEI Y F, et al. Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability [J]. Photonics Res., 2021, 10(6): 1440-1452. doi: 10.1364/prj.452620http://dx.doi.org/10.1364/prj.452620
ROH K, ZHAO L F, GUNNARSSON W B, et al. Widely tunable, room temperature, single-mode lasing operation from mixed-halide perovskite thin films [J]. ACS Photonics, 2019, 6(12): 3331-3337. doi: 10.1021/acsphotonics.9b01501http://dx.doi.org/10.1021/acsphotonics.9b01501
CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35242-35249. doi: 10.1021/acsami.0c08870http://dx.doi.org/10.1021/acsami.0c08870
ANDREW P, TURNBULL G A, SAMUEL I D W, et al. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser [J]. Appl. Phys. Lett., 2002, 81(6): 954-956. doi: 10.1063/1.1496497http://dx.doi.org/10.1063/1.1496497
GANGISHETTY M K, HOU S C, QUAN Q M, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes [J]. Adv. Mater., 2018, 30(20): 1706226-1-6. doi: 10.1002/adma.201706226http://dx.doi.org/10.1002/adma.201706226
YIN X W, HAN J H, ZHOU Y, et al. Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells [J]. J. Mater. Chem. A, 2019, 7(10): 5666-5676. doi: 10.1039/c8ta11782ahttp://dx.doi.org/10.1039/c8ta11782a
SHEN Y, SHEN K C, LI Y Q, et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2021, 31(6): 2006736-1-9. doi: 10.1002/adfm.202006736http://dx.doi.org/10.1002/adfm.202006736
YANG F, CHEN H T, ZHANG R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals [J]. Adv. Funct. Mater., 2020, 30(10): 1908760-1-7. doi: 10.1002/adfm.201908760http://dx.doi.org/10.1002/adfm.201908760
LIANG A H, WANG K, GAO Y, et al. Highly efficient halide perovskite light-emitting diodes via molecular passivation [J]. Angew. Chem. Int. Ed., 2021, 60(15): 8337-8343. doi: 10.1002/anie.202100243http://dx.doi.org/10.1002/anie.202100243
LIANG Y, SHANG Q Y, LI M L, et al. Solvent recrystallization-enabled green amplified spontaneous emissions with an ultra-low threshold from pinhole-free perovskite films [J]. Adv. Funct. Mater., 2021, 31(48): 2106108-1-8. doi: 10.1002/adfm.202106108http://dx.doi.org/10.1002/adfm.202106108
GHOSH J, GIRI P K. Vacuum deposited PbI2 film grown at elevated temperatures for improved efficiency of CH3NH3PbI3 based planar perovskite solar cells [J]. Mater. Res. Bull., 2021, 139: 111255-1-10. doi: 10.1016/j.materresbull.2021.111255http://dx.doi.org/10.1016/j.materresbull.2021.111255
NEUTZNER S, KANDADA A R S, LANZANI G, et al. A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites [J]. J. Mater. Chem. C, 2016, 4(21): 4630-4633. doi: 10.1039/c6tc01360khttp://dx.doi.org/10.1039/c6tc01360k
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
KONG W G, YE Z Y, QI Z, et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3 [J]. Phys. Chem. Chem. Phys., 2015, 17(25): 16405-16411. doi: 10.1039/c5cp02605ahttp://dx.doi.org/10.1039/c5cp02605a
JIA Y F, KERNER R A, GREDE A J, et al. Continuous-wave lasing in an organic‐inorganic lead halide perovskite semiconductor [J]. Nat. Photonics, 2017, 11(12): 784-788. doi: 10.1038/s41566-017-0047-6http://dx.doi.org/10.1038/s41566-017-0047-6
GAN Z X, CHEN W J, ZHOU C H, et al. Efficient energy funnelling by engineering the bandgap of a perovskite: Förster resonance energy transfer or charge transfer? [J]. J. Phys. Chem. Lett., 2020, 11(15): 5963-5971. doi: 10.1021/acs.jpclett.0c01860http://dx.doi.org/10.1021/acs.jpclett.0c01860
LEI L, SEYITLIYEV D, STUARD S, et al. Efficient energy funneling in quasi-2D perovskites: from light emission to lasing [J]. Adv. Mater., 2020, 32(16): 1906571-1-9. doi: 10.1002/adma.201906571http://dx.doi.org/10.1002/adma.201906571
GAO X P, ZHANG X T, YIN W X, et al. Ruddlesden‐Popper perovskites: synthesis and optical properties for optoelectronic applications [J]. Adv. Sci., 2019, 6(22): 1900941-1-22. doi: 10.1002/advs.201900941http://dx.doi.org/10.1002/advs.201900941
HUANG C, SUN W Z, FAN Y B, et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate [J]. ACS Nano, 2018, 12(4): 3865-3874. doi: 10.1021/acsnano.8b01206http://dx.doi.org/10.1021/acsnano.8b01206
TIGUNTSEVA E, KOSHELEV K, FURASOVA A, et al. Room-temperature lasing from mie-resonant nonplasmonic nanoparticles [J]. ACS Nano, 2020, 14(7): 8149-8156. doi: 10.1021/acsnano.0c01468http://dx.doi.org/10.1021/acsnano.0c01468
JIANG M M, WAN P, TANG K, et al. An electrically driven whispering gallery polariton microlaser [J]. Nanoscale, 2021, 13(10): 5448-5459. doi: 10.1039/d0nr08168jhttp://dx.doi.org/10.1039/d0nr08168j
SCHNEIDER C, RAHIMI-IMAN A, KIM N Y, et al. An electrically pumped polariton laser [J]. Nature, 2013, 497(7449): 348-352. doi: 10.1038/nature12036http://dx.doi.org/10.1038/nature12036
HUANG C, ZHANG C, XIAO S M, et al. Ultrafast control of vortex microlasers [J]. Science, 2020, 367(6481): 1018-1021. doi: 10.1126/science.aba4597http://dx.doi.org/10.1126/science.aba4597
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions [J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849http://dx.doi.org/10.1126/science.1114849
LI C, LIU Z, SHANG Q Y, et al. Surface-plasmon-assisted metal halide perovskite small lasers [J]. Adv. Opt. Mater., 2019, 7(17): 1900279-1-9. doi: 10.1002/adom.201900279http://dx.doi.org/10.1002/adom.201900279
WU Z Y, CHEN J, MI Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers [J]. Adv. Opt. Mater., 2018, 6(22): 1800674-1-8. doi: 10.1002/adom.201800674http://dx.doi.org/10.1002/adom.201800674
WU X, JIANG X F, HU X W, et al. Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods [J]. Nanoscale, 2019, 11(4): 1959-1967. doi: 10.1039/c8nr08952chttp://dx.doi.org/10.1039/c8nr08952c
CUI Q L, HE F, LI L D, et al. Controllable metal-enhanced fluorescence in organized films and colloidal system [J]. Adv. Colloid and Interface Sci., 2014, 207: 164-177. doi: 10.1016/j.cis.2013.10.011http://dx.doi.org/10.1016/j.cis.2013.10.011
CHO S, YANG Y, SOLJAČIĆ M, et al. Submicrometer perovskite plasmonic lasers at room temperature [J]. Sci. Adv., 2021, 7(35): eabf3362. doi: 10.1126/sciadv.abf3362http://dx.doi.org/10.1126/sciadv.abf3362
LIU Z Z, HUANG S H, DU J, et al. Advances in inorganic and hybrid perovskites for miniaturized lasers [J]. Nanophotonics, 2020, 9(8): 2251-2272. doi: 10.1515/nanoph-2019-0572http://dx.doi.org/10.1515/nanoph-2019-0572
REN K K, WANG J, CHEN S Q, et al. Realization of perovskite-nanowire-based plasmonic lasers capable of mode modulation [J]. Laser Photonics Rev., 2019, 13(7): 1800306-1-9. doi: 10.1002/lpor.201800306http://dx.doi.org/10.1002/lpor.201800306
TONKAEV P, KIVSHAR Y. High-Q dielectric mie-resonant nanostructures (brief review) [J]. JETP Lett., 2020, 112(10): 615-622. doi: 10.1134/s0021364020220038http://dx.doi.org/10.1134/s0021364020220038
HAN Q, WANG J, LU J, et al. Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid [J]. ACS Photonics, 2020, 7(2): 454-462. doi: 10.1021/acsphotonics.9b01413http://dx.doi.org/10.1021/acsphotonics.9b01413
TIAN C, GUO T, ZHAO S Q, et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity [J]. RSC Adv., 2019, 9(62): 35984-35989. doi: 10.1039/c9ra07442bhttp://dx.doi.org/10.1039/c9ra07442b
0
Views
473
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution