浏览全部资源
扫码关注微信
1.中国计量大学 光学与电子科技学院, 浙江 杭州 310016
2.中国计量科学研究院 热工计量科学研究所, 北京 100029
Published:05 December 2022,
Received:18 May 2022,
Revised:03 June 2022,
扫 描 看 全 文
胡萍,刘晓萌,田颖等.直接泵浦中红外Dy∶PbGa2S4激光器研究进展[J].发光学报,2022,43(12):1905-1914.
HU Ping,LIU Xiao-meng,TIAN Ying,et al.Research Progress of Directly Pumped Mid-infraredDy∶PbGa2S4 Lasers[J].Chinese Journal of Luminescence,2022,43(12):1905-1914.
胡萍,刘晓萌,田颖等.直接泵浦中红外Dy∶PbGa2S4激光器研究进展[J].发光学报,2022,43(12):1905-1914. DOI: 10.37188/CJL.20220203.
HU Ping,LIU Xiao-meng,TIAN Ying,et al.Research Progress of Directly Pumped Mid-infraredDy∶PbGa2S4 Lasers[J].Chinese Journal of Luminescence,2022,43(12):1905-1914. DOI: 10.37188/CJL.20220203.
3~5 µm中红外激光在光电对抗、激光医疗、有害气体探测等领域具有重要的应用。以稀土离子掺杂的晶体作为增益介质可实现中红外激光输出,其中镝掺杂硫镓铅(Dy∶PbGa
2
S
4
,Dy∶PGS)晶体具有相对较低的声子能量和较大的电子能隙,是一种性能优良、具有潜在应用价值的中红外激光介质材料。本文综述了中红外Dy∶PGS固体激光器的研究进展,重点介绍了在不同波长泵浦下的连续或脉冲激光输出特性,并对其未来发展方向进行了探讨。
Mid-infrared laser at 3-5 µm has important applications in the fields of photoelectric countermeasures, laser medical treatment, harmful gas detection. Rare earth ion doped crystal can be used as gain medium to realize mid-infrared laser output. Dysprosium doped lead thiogallate(Dy∶PbGa
2
S
4
,Dy∶PGS) crystal is a mid-infrared laser medium material with excellent performance and potential application value under the advantages of relatively low phonon energy and large electron energy gap. In this paper, the research progress of mid-infrared Dy∶PGS solid state lasers is reviewed, with emphasis on the output characteristics of continuous or pulsed lasers pumped at different wavelengths, and its future development directions are discussed.
激光器中红外激光Dy∶PbGa2S4直接泵浦
lasersmid-infrared laserDy∶PbGa2S4directly pumped
刘晓旭, 韩聚洪, 蔡和, 等. 用于光电对抗的高重频中红外激光器综述 [J]. 激光技术, 2021, 45(3): 271-279. doi: 10.7510/jgjs.issn.1001-3806.2021.03.001http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2021.03.001
LIU X X, HAN J H, CAI H, et al. Review of high repetition-rate mid-infrared lasers for photoelectric countermeasures [J]. Laser Technol., 2021, 45(3): 271-279. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2021.03.001http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2021.03.001
徐玲, 卜令兵, 蔡镐泽, 等. 中红外差分吸收激光雷达NO2测量波长选择及探测能力模拟 [J]. 红外与激光工程, 2018, 47(10): 1030002-1-8. doi: 10.3788/IRLA201847.1030002http://dx.doi.org/10.3788/IRLA201847.1030002
XU L, BU L B, CAI H Z, et al. Wavelength selection and detection capability simulation of the mid-infrared DIAL for NO2 detecion [J]. Infrared Laser Eng., 2018, 47(10): 1030002-1-8. (in Chinese). doi: 10.3788/IRLA201847.1030002http://dx.doi.org/10.3788/IRLA201847.1030002
辛文辉, 毕元硕, 李仕春, 等. 甲醛气体探测的DIAL波长选择及探测性能 [J/OL]. 红外与激光工程, 2022: 1-11(2022-01-24). http://kns.cnki.net/kcms/detail/12.1261.tn.20220121.1504.011.htmlhttp://kns.cnki.net/kcms/detail/12.1261.tn.20220121.1504.011.html.
XIN W H, BI Y S, LI S C, et al. Research on wavelength selection and detection performance of DIAL for formaldehyde gas detection [J]. Infrared Laser Eng., 2022: 1-11(2022-01-24). http://kns.cnki.net/kcms/detail/12.1261.tn. 20220121.1504.011.html.http://kns.cnki.net/kcms/detail/12.1261.tn.20220121.1504.011.html.(in Chinese)
汪伟. 中红外波段高速空间激光通信技术研究 [D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.
WANG W. Research on High‐speed Space Laser Communication Technology in Mid‐infrared Band [D]. Xi’an: University of Chinese Academy of Sciences(Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences), 2020. (in Chinese)
付小宁, 王洁, 任保文. 空中侦察系统中红外小目标的被动测距 [J]. 应用科学学报, 2012, 30(3): 294-298. doi: 10.3969/j.issn.0255-8297.2012.03.013http://dx.doi.org/10.3969/j.issn.0255-8297.2012.03.013
FU X N, WANG J, REN B W. Passive ranging of small infrared target in airborne reconnaissance [J]. J. Appl. Sci., 2012, 30(3): 294-298. (in Chinese). doi: 10.3969/j.issn.0255-8297.2012.03.013http://dx.doi.org/10.3969/j.issn.0255-8297.2012.03.013
尚将. 应用Er∶YAG激光与传统手术刀行口内软组织切口的对比研究 [D]. 大连: 大连医科大学, 2016.
SHANG J. A Comparative Study of Wound Healing Following Incision With Scalpel or Er∶YAG Laser in the Oral Soft Tissue [D]. Dalian: Dalian Medical University, 2016. (in Chinese)
马芮. 应用铒激光、半导体激光与手术刀作用于大鼠口腔颊黏膜创口的对比研究 [D]. 北京: 北京协和医学院, 2018.
MA R. Comparative Study of the Effect of Er∶YAG Laser, Diode Laser and Traditional Scalpel on Oral Buccal Mucosa Wound in Rats [D]. Beijing: Peking Union Medical College, 2018. (in Chinese)
MAJEWSKI M R, WOODWARD R I, JACKSON S D. Dysprosium mid-infrared lasers: current status and future prospects [J]. Laser Photonics Rev., 2020, 14(3): 1900195-1-20.
朱纯凡, 王贤耿, 汪祥, 等. 中红外量子级联激光器的光子集成(特邀) [J]. 红外与激光工程, 2022, 51(3): 20220197-1-7. doi: 10.3788/IRLA20220197http://dx.doi.org/10.3788/IRLA20220197
ZHU C F, WANG X G, WANG X, et al. Photonics integration of mid-infrared quantum cascade laser(Invited) [J]. Infrared Laser Eng., 2022, 51(3): 20220197-1-7. (in Chinese). doi: 10.3788/IRLA20220197http://dx.doi.org/10.3788/IRLA20220197
邓凯, 高志远, 韩隆, 等. 量子级联激光器及其应用的研究进展 [J]. 光电技术应用, 2021, 36(5): 23-29, 35. doi: 10.3969/j.issn.1673-1255.2021.05.004http://dx.doi.org/10.3969/j.issn.1673-1255.2021.05.004
DENG K, GAO Z Y, HAN L, et al. Applications and progress of quantum cascade lasers [J]. Electro‐Opt. Technol. Appl., 2021, 36(5): 23-29, 35. (in Chinese). doi: 10.3969/j.issn.1673-1255.2021.05.004http://dx.doi.org/10.3969/j.issn.1673-1255.2021.05.004
ZHOU W J, LU Q Y, WU D H, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm [J]. Opt. Express, 2019, 27(11): 15776-15785.
DUDELEV V V, MIKHAILOV D A, BABICHEV A V, et al. Development and study of high-power quantum-cascade lasers emitting at 4.5-4.6 μm [J]. Quantum Electron., 2020, 50(11): 989-994.
BOHN W, BUELOW HVOM, DASS S, et al. High-power supersonic CO laser on fundamental and overtone transitions [J]. Quantum Electron., 2005, 35(12): 1126-1130.
崔宇龙, 周智越, 黄威, 等. 中红外光纤激光技术研究进展与展望 [J]. 光学学报, 2022, 42(9): 0900001-1-30. doi: 10.3788/AOS202242.0900001http://dx.doi.org/10.3788/AOS202242.0900001
CUI Y L, ZHOU Z Y, HUANG W, et al. Progress and prospect of mid-infrared fiber laser technology [J]. Acta Opt. Sinica, 2022, 42(9): 0900001-1-30. (in Chinese). doi: 10.3788/AOS202242.0900001http://dx.doi.org/10.3788/AOS202242.0900001
MAES F, FORTIN V, POULAIN S, et al. Room-temperature fiber laser at 3.92 μm [J]. Optica, 2018, 5(7): 761-764. doi: 10.1364/optica.5.000761http://dx.doi.org/10.1364/optica.5.000761
SHIRYAEV V S, SUKHANOV M V, VELMUZHOV A P, et al. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm [J]. J. Non‐Cryst. Solids, 2021, 567: 120939-1-9.
李充, 谢冀江, 潘其坤, 等. 中红外光学参量振荡器技术进展 [J]. 中国光学, 2016, 9(6): 615-624. doi: 10.3788/CO.20160906.0615http://dx.doi.org/10.3788/CO.20160906.0615
LI C, XIE J J, PAN Q K, et al. Progress of mid-infrared optical parametric oscillator [J]. Chin. Opt., 2016, 9(6): 615-624. (in Chinese). doi: 10.3788/CO.20160906.0615http://dx.doi.org/10.3788/CO.20160906.0615
LIU G Y, MI S Y, YANG K, et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300 W-class Ho∶YAG MOPA system [J]. Opt. Lett., 2021, 46(1): 82-85.
周松, 李茂忠, 姜杰, 等. 中红外固体激光技术研究进展 [J]. 红外技术, 2019, 41(5): 391-399.
ZHOU S, LI M Z, JIANG J, et al. Solid-state mid-infrared laser technology research progress [J]. Infrared Technol., 2019, 41(5): 391-399. (in Chinese)
徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+∶ZnSe激光器研究进展 [J]. 中国光学, 2021, 14(3): 458-469.
XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+∶ZnSe lasers [J]. Chin. Opt., 2021, 14(3): 458-469. (in Chinese)
柯常军, 孔心怡, 王然, 等. 中红外Fe∶ZnSe激光技术最新研究进展 [J]. 红外与激光工程, 2016, 45(3): 0305002-1-7.
KE C J, KONG X Y, WANG R, et al. Research progress on mid-IR Fe∶ZnSe laser technology [J]. Infrared Laser Eng., 2016, 45(3): 0305002-1-7. (in Chinese)
薛艳艳, 徐晓东, 苏良碧, 等. 中红外波段激光晶体的研究进展 [J]. 人工晶体学报, 2020, 49(8): 1347-1360.
XUE Y Y, XU X D, SU L B, et al. Research progress of mid-infrared laser crystals [J]. J. Synth. Cryst., 2020, 49(8): 1347-1360. (in Chinese)
KAMENSHCHIKOV V N, STEFANOVICH V A, SUSLIKOV L M. Birefringence of PbGa2S4 crystals [J]. Opt. Spectrosc., 2013, 114(3): 394-396.
ASATRYAN H, BARANOV P. The method of electron paramagnetic resonance for quantum electronic materials investigation (YAG, YLuAG, YAP, YLuAP, PbGa2S4)[J]. Int. J. Mod. Phys.: Conf. Ser., 2012, 15: 16-21.
NEUMANN H, SOBOTTA H, SYRBU N N, et al. Infrared lattice vibrations of PbGa2S4 [J]. Cryst. Res. Technol., 1994, 29(2): 289-296.
KAMENSHCHIKOV V N, STEFANOVICH V A, GAD’MASHI Z P, et al. Optical phonons in PbGa2S4 crystals [J]. Phys. Solid State, 2007, 49(2): 351-355.
MUSAEVA N N, DZHABBAROV R B, KASUMOV U F, et al. Optical and photoelectric properties of single-crystal PbGa2S4 [J]. J. Opt. Technol., 2003, 70(9): 676-679.
KAMENSHCHIKOV V N, SUSLIKOV L M. Calculation of the optical properties of PbGa2S4 crystal [J]. Opt. Spectrosc., 2014, 116(4): 564-566.
BADIKOV V, BADIKOV D, DOROSHENKO M, et al. Optical properties of lead thiogallate [J]. Opt. Mater., 2008, 31(2): 184-188.
DOROSHENKO M E, BASIEV T T, OSIKO V V, et al. Oscillation properties of dysprosium-doped lead thiogallate crystal [J]. Opt. Lett., 2009, 34(5): 590-592.
JELINKOVÁ H, ŠULC J, JELÍNEK M, et al. Mid-IR radiation generated by Dy∶PbGa2S4 laser [C]. Proceedings of the Advanced Solid State Lasers, Shanghai, 2014: ATu2A.12.
BASIEV T T, DOROSHENKO M E, OSIKO V V, et al. Mid IR laser oscillations in new low phonon PbGa2S4∶Dy3+ crystal [C]. Proceedings of the Advanced Solid⁃State Photonics, Vienna, 2005: 75.
WU K, PAN S L, WU H P, et al. Synthesis, structures, optical properties and electronic structures of PbGa2Q4 (Q = S, Se) crystals [J]. J. Mol. Struct., 2015, 1082: 174-179.
HUANG C B, NI Y B, WU H X, et al. Crystal growth and first-principles calculations of the mid-IR laser crystal Dy3+∶ PbGa2S4 [J]. Cryst. Growth Des., 2020, 20(2): 845-850.
方攀, 袁泽锐, 陈莹, 等. 中红外激光晶体Dy∶PbGa2S4的生长与器件制备 [J]. 人工晶体学报, 2020, 49(5): 771-773.
FANG P, YUAN Z R, CHEN Y, et al. Growth and device fabrication of mid-infrared laser crystal Dy∶PbGa2S4 [J]. J. Synth. Cryst., 2020, 49(5): 771-773. (in Chinese)
BASIEV T T, DOROSHENKO M E, IVLEVA L I, et al. Some new approaches for development of mid-IR laser sources [C]. Proceedings of SPIE, 6998 Solid State Lasers and Amplifiers Ⅲ, Strasbourg, 2008: 69980P-1-3.
JELINKOVA H, KORANDA P, SULC J, et al. Dysprosium doped lead thiogallate laser [C]. Proceedings of the Advanced Solid⁃State Photonics 2009, Denver, 2009: WB23.
ŠULC J, JELÍNKOVÁ H, DOROSHENKO M E, et al. Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd: YAG laser [J]. Opt. Lett., 2010, 35(18): 3051-3053.
BASIEV T T, DOROSHENKO M E, OSIKO V V, et al. Laser properties of Na+ ions co-doped PbGa2S4∶Dy3+ crystal [C]. Proceedings of the Advanced Solid⁃State Photonics, San Diego, 2010: ATuA4.
BASIEV T T, DOROSHENKO M E, OSIKO V V, et al. Qualitative improvement in the lasing performance of PbGa2S4∶Dy3+ crystals through Na+ doping [J]. Quantum Electron., 2010, 40(7): 596-598.
DOROSHENKO M E, BASIEV T T, OSIKO V V, et al. Four micron radiation generated by dysprosium doped lead thiogallate laser [C]. Proceedings of SPIE 7578, Solid State Lasers ⅪⅩ: Technology and Devices, San Francisco, 2010: 757825-1-5.
ŠULC J, JELÍNKOVÁ H, DOROSHENKO M E, et al. High duty cycle and long pulse operation of Dy∶PbGa2S4 laser excited by diode pumped Nd∶YAG [C]. Proceedings of the Advanced Solid⁃state Photonics, Istanbul, 2011: AWA21.
ŠULC J, JELÍNKOVÁ H, DOROSCHENKO M E, et al. Four-micron CW operating Dy∶PbGa2S4 laser [C]. Proceedings of the 2011 Conference on Lasers and Electro⁃Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), Munich, 2011: CA8_6.
JELÍNKOVÁ H, DOROSCHENKO M E, JELÍNEK M, et al. Dysprosium lead thiogallate crystal resonantly pumped by Er∶YLF laser radiation[C]. Proceedings of the Advanced Solid⁃state Photonics, Istanbul, 2011: ATuB18.
JELÍNKOVÁ H, DOROSHENKO M E, JELÍNEK M, et al. Resonant pumping of dysprosium doped lead thiogallate by 1.7 µm Er∶YLF laser radiation [J]. Laser Phys. Lett., 2011, 8(5): 349-353.
JELÍNKOVÁ H, NEMEC M, MIYAGI M, et al. Dy∶PbGa2S4 laser radiation and its delivery by hollow waveguide [C]. Proceedings of SPIE 8218, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications Ⅻ, San Francisco, 2012: 82180R-1-5.
DOROSHENKO M E, JELÍNKOVÁ H, ŠULC J, et al. Tuning possibility of dysprosium-doped lead thiogallate laser [C]. Proceedings of SPIE 8235, Solid State Lasers ⅩⅪ: Technology and Devices, San Francisco, 2012: 82351X-1-7.
JELÍNKOVÁ H, DOROSHENKO M E, JELÍNEK M, et al. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode [J]. Opt. Lett., 2013, 38(16): 3040-3043.
DOROSHENKO M E, JELÍNEK M, SULC J, et al. Diode-pumped dysprosium-doped-PbGa2S4 mid-infrared laser [C]. Proceedings of the 2013 Conference on Lasers & Electro⁃Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, 2014: CA_P_30.
JELINKOVA H, DOROSHENKO M E, OSIKO V V, et al. Dysprosium thiogallate laser: source of mid-infrared radiation at 2.4, 4.3, and 5.4 μm [J]. Appl. Phys. A, 2016, 122(8): 738-1-8.
JELÍNKOVÁ H, DOROSHENKO M E, ŠULC J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm [C]. Proceedings of SPIE 9726, Solid State Lasers ⅩⅩⅤ: Technology and Devices, San Francisco, 2016: 97261A-1-6.
0
Views
164
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution