浏览全部资源
扫码关注微信
1.河北大学物理科学与技术学院 光信息技术创新中心, 河北 保定 071002
2.河北省光学感知技术创新中心, 河北 保定 071002
3.北京交通大学 电子信息工程学院, 北京 100044
Published:05 October 2022,
Received:04 May 2022,
Revised:21 May 2022,
扫 描 看 全 文
毕文文,冯亭,苏鲸等.布里渊双波长窄线宽光纤激光器及其扫频微波信号生成[J].发光学报,2022,43(10):1601-160810.37188/CJL.20220176.
BI Wen-wen,FENG Ting,SU Jing,et al.Brillouin Dual-wavelength Narrow-linewidth Fiber Laser and Its Application in Frequency-swept Microwave-signal Generation[J].Chinese Journal of Luminescence,2022,43(10):1601-160810.37188/CJL.20220176.
毕文文,冯亭,苏鲸等.布里渊双波长窄线宽光纤激光器及其扫频微波信号生成[J].发光学报,2022,43(10):1601-160810.37188/CJL.20220176. DOI:
BI Wen-wen,FENG Ting,SU Jing,et al.Brillouin Dual-wavelength Narrow-linewidth Fiber Laser and Its Application in Frequency-swept Microwave-signal Generation[J].Chinese Journal of Luminescence,2022,43(10):1601-160810.37188/CJL.20220176. DOI:
提出并验证了一种基于高非线性光纤(HNLF)的布里渊双波长窄线宽光纤激光器,并对其扫频微波信号生成进行了研究。窄线宽光纤激光种子源经高功率掺铒光纤放大器进行功率放大,并使用光纤光栅滤除自发辐射噪声后,作为受激布里渊散射(SBS)的泵浦光;为降低SBS阈值,使用长3.0 m的HNLF作为布里渊增益介质,布里渊激光谐振腔的腔长为6.6 m,对应的纵模间隔约为31 MHz,可以保证在布里渊增益谱范围内实现激光单纵模运行;在HNLF入纤泵浦光功率为1.8 W时,测得布里渊激光的线宽为622.50 Hz,且结合残余泵浦光得到了双波长激光输出,光信噪比>77 dB;对双波长激光进行拍频,在9.4 GHz附近得到微波信号,且利用定制步进电机光纤拉伸机构对HNLF引入应变调制,实现了速率为10 Hz、范围为289.7 MHz的扫频微波信号输出。提出的激光器系统实现方法简单,在光/无线通信、光纤传感、微波光子学等领域具有潜在应用价值。
A Brillouin dual-wavelength narrow-linewidth fiber laser with a high-nonlinear-fiber(HNLF) is proposed and demonstrated, and the frequency-swept microwave-signal generation with the fiber laser is studied in detail. A narrow-linewidth fiber laser source as the seed laser is amplified by a high-power erbium-doped fiber amplifier. The amplified laser is then filtered to remove the strong amplified spontaneous emission noise by a high-reflection fiber Bragg grating(FBG) with the reflecting center wavelength close to the seed fiber laser’s output wavelength, and is subsequently used as the pump laser of stimulated Brillouin scattering(SBS) of the HNLF. The length of HNLF is 3.0 m long, which can provide a low SBS pump threshold. The cavity length of the Brillouin laser is 6.6 m, corresponding to a longitudinal-mode spacing of ~31 MHz, which can ensure the single-longitudinal-mode operation of the Brillouin laser. When the input power of HNLF is 1.8 W, the linewidth of the Brillouin laser measured is 622.50 Hz, and the dual-wavelength lasing output with a signal-to-noise ratio(OSNR) of >77 dB is obtained by combining the residual pump laser and the Brillouin laser. By beating the dual-wavelength laser output, a microwave signal with a frequency around 9.4 GHz is obtained. Using a step-motor based fiber stretcher to introduce strain modulation to the HNLF, the frequency-swept microwave signal with a sweep-range of 289.7 MHz and a sweep-rate of 10 Hz is realized. The proposed fiber laser has potential applications in optical/wireless communication, fiber sensing, and microwave photonics.
受激布里渊散射双波长光纤激光器扫频微波信号
stimulated Brillouin scatteringdual-wavelength fiber laserfrequency-swept microwave signal
POPOVSKI P. Ultra-reliable communication in 5G wireless systems [C]. 1st International Conference on 5G for Ubiquitous Connectivity, Akaslompolo, 2014: 146-151. doi: 10.4108/icst.5gu.2014.258154http://dx.doi.org/10.4108/icst.5gu.2014.258154
METAXAS A C. Radio frequency and microwave heating applicators and their use in industry [C]. American Chemical Society (ACS) National Meeting, Anaheim, 1995: 2088.
JONES S M R, WATSON P A. Attenuation and countermeasures in millimeter-wave point-to-multipoint networks [J]. Radio Sci., 1993, 28(6): 1057-1069. doi: 10.1029/93rs01631http://dx.doi.org/10.1029/93rs01631
PARK J, WANG Y X, ITOH T. A microwave communication link with self-heterodyne direct down conversion and system predistortion [J]. IEEE Trans. Microwave Theory Tech., 2002, 50(12): 3059-3063. doi: 10.1109/tmtt.2002.805134http://dx.doi.org/10.1109/tmtt.2002.805134
GOYAL R, RANDHAWA R, KALER R S. Single tone and multi tone microwave over fiber communication system using direct detection method [J]. Optik, 2012, 123(10): 917-923. doi: 10.1016/j.ijleo.2011.01.018http://dx.doi.org/10.1016/j.ijleo.2011.01.018
GINZTON E L, NUNAN C S. History of microwave electron linear accelerators for radiotherapy [J]. Int. J. Radiat. Oncol. Biol. Phys., 1985, 11(2): 205-216. doi: 10.1016/0360-3016(85)90141-5http://dx.doi.org/10.1016/0360-3016(85)90141-5
ZENG X Z, FHAGER A, HE Z X, et al. Development of a time domain microwave system for medical diagnostics [J]. IEEE Trans. Instrum. Meas., 2014, 63(12): 2931-2939. doi: 10.1109/tim.2014.2326277http://dx.doi.org/10.1109/tim.2014.2326277
SUN T G, GUO Y B, WANG T S, et al. Widely tunable wavelength spacing dual-wavelength single longitudinal mode erbium doped fiber laser [J]. Opt. Fiber Technol., 2014, 20(3): 235-238. doi: 10.1016/j.yofte.2014.02.006http://dx.doi.org/10.1016/j.yofte.2014.02.006
LIU S, YAN F P, TAN S Y, et al. Stability wavelength-spacing-tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on nonlinear amplifying loop mirror [J]. Opt. Quant. Electron., 2017, 49(1): 15-1-10. doi: 10.1007/s11082-016-0863-9http://dx.doi.org/10.1007/s11082-016-0863-9
FENG T, WEI D, BI W W, et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter [J]. Opt. Express, 2021, 29(20): 31179-31200. doi: 10.1364/oe.439732http://dx.doi.org/10.1364/oe.439732
OTTERSTROM N T, BEHUNIN R O, KITTLAUS E A, et al. A silicon Brillouin laser [J]. Science, 2018, 360(6393): 1113-1116. doi: 10.1126/science.aar6113http://dx.doi.org/10.1126/science.aar6113
WU Z J, ZHAN L, SHEN Q S, et al. Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain [J]. Opt. Lett., 2011, 36(19): 3837-3839. doi: 10.1364/ol.36.003837http://dx.doi.org/10.1364/ol.36.003837
LIU J M, ZHAN L, XIAO P P, et al. Optical generation of tunable microwave signal using cascaded Brillouin fiber lasers [J]. IEEE Photon. Technol. Lett., 2012, 24(1): 22-24. doi: 10.1109/lpt.2011.2171932http://dx.doi.org/10.1109/lpt.2011.2171932
SHEN Y, ZHANG X M, CHEN K S. All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser [J]. J. Lightwave Technol., 2005, 23(5): 1860-1865. doi: 10.1109/jlt.2005.846910http://dx.doi.org/10.1109/jlt.2005.846910
WANG R G, ZHANG X P, HU J H, et al. Photonic generation of tunable microwave signal using Brillouin fiber laser [J]. Appl. Opt., 2012, 51(8): 1028-1032. doi: 10.1364/ao.51.001028http://dx.doi.org/10.1364/ao.51.001028
HILL K O, KAWASAKI B S, JOHNSON D C. CW Brillouin laser [J]. Appl. Phys. Lett., 1976, 28(10): 608-609. doi: 10.1063/1.88583http://dx.doi.org/10.1063/1.88583
STÉPIEN L, RANDOUX S, ZEMMOURI J. Intensity noise in Brillouin fiber ring lasers [J]. J. Opt. Soc. Am. B, 2002, 19(5): 1055-1066. doi: 10.1364/josab.19.001055http://dx.doi.org/10.1364/josab.19.001055
DEBUT A, RANDOUX S, ZEMMOURI J. Linewidth narrowing in Brillouin lasers: theoretical analysis [J]. Phys. Rev. A, 2000, 62(2): 023803-1-4. doi: 10.1103/physreva.62.023803http://dx.doi.org/10.1103/physreva.62.023803
Al-MANSOORI M H, NAJI A W, IQBAL S J, et al. L-band Brillouin-erbium fiber laser pumped with 1 480 nm pumping scheme in a linear cavity [J]. Laser Phys. Lett., 2007, 4(5): 371-375. doi: 10.1002/lapl.200610116http://dx.doi.org/10.1002/lapl.200610116
FENG X H, CHENG L H, LI J, et al. Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump [J]. Opt. Laser Technol., 2011, 43(7): 1355-1357. doi: 10.1016/j.optlastec.2011.04.007http://dx.doi.org/10.1016/j.optlastec.2011.04.007
FENG T, WANG M M, DING D L, et al. High OSNR and simple configuration dual-wavelength fiber laser with wide tunability in S+C+L band [J]. Chin. Opt. Lett., 2017, 15(11): 110602-1-4. doi: 10.3788/col201715.110602http://dx.doi.org/10.3788/col201715.110602
李永倩, 李晓娟, 安琪, 等. 一种利用布里渊谱宽确定光纤SBS阈值的新方法 [J]. 红外与激光工程, 2017, 46(2): 0222001-1-7. doi: 10.3788/IRLA201746.0222001http://dx.doi.org/10.3788/IRLA201746.0222001
LI Y Q, LI X J, AN Q, et al. New method for the determination of SBS threshold in an optical fiber by employing Brillouin spectrum width [J]. Infrared Laser Eng., 2017, 46(2): 0222001-1-7. (in Chinese). doi: 10.3788/IRLA201746.0222001http://dx.doi.org/10.3788/IRLA201746.0222001
刘加庆, 韩顺利, 刘磊, 等. 光纤受激布里渊增益谱线型特性分析 [J]. 光谱学与光谱分析, 2020, 40(7): 2307-2312. doi: 10.3964/j.issn.1000-0593(2020)07-2307-06http://dx.doi.org/10.3964/j.issn.1000-0593(2020)07-2307-06
LIU J Q, HAN S L, LIU L, et al. Characterization of SBS gain spectrum Lineshape in fiber [J]. Spectrosc. Spectral Anal., 2020, 40(7): 2307-2312. (in Chinese). doi: 10.3964/j.issn.1000-0593(2020)07-2307-06http://dx.doi.org/10.3964/j.issn.1000-0593(2020)07-2307-06
SHIMIZU K, HORIGUCHI T, KOYAMADA Y, et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber [J]. Opt. Lett., 1993, 18(3): 185-187. doi: 10.1364/ol.18.000185http://dx.doi.org/10.1364/ol.18.000185
王淼, 朱英勋, 张永智. 布里渊散射增益谱的温度与应力特性分析 [C]. 第十六届全国测控、计量、仪器仪表学术年会论文集, 北京, 2006: 1457-1469.
WANG M, ZHU Y X, ZHANG Y Z. Analysis of temperature and stress characteristics of Brillouin scattering gain spectrum [C]. 16th National Conference on Measurement and Control, Metrology and Instrumentation, Beijing, 2006: 1457-1469. (in Chinese)
PELED Y, MOTIL A, TUR M. Fast Brillouin optical time domain analysis for dynamic sensing [J]. Opt. Express, 2012, 20(8): 8584-8591. doi: 10.1364/oe.20.008584http://dx.doi.org/10.1364/oe.20.008584
0
Views
181
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution