1.中山大学 化学学院, 广东 广州 510006
2.Department of Physics & Astronomy, Georgia Southern University, Statesboro, GA 30460, USA
扫 描 看 全 文
OU Yi-yi, WANG Xiao-jun, LIANG Hong-bin. Luminescence and Energy Transfer of Tb3+ in K3La(PO4)2. [J]. Chinese Journal of Luminescence 43(9):1350-1360(2022)
OU Yi-yi, WANG Xiao-jun, LIANG Hong-bin. Luminescence and Energy Transfer of Tb3+ in K3La(PO4)2. [J]. Chinese Journal of Luminescence 43(9):1350-1360(2022) DOI: 10.37188/CJL.20220170.
采用高温固相方法合成了不同浓度Tb,3+,掺杂的单斜结构K,3,La(PO,4,),2,荧光粉,利用XRD表征了其相纯度,并对基质化合物进行了结构精修。研究了Tb,3+,掺杂样品在不同温度下的发光性质及不同掺杂浓度样品在室温下的发光性质。发现在室温、373 nm激发下,Tb,3+,离子表现为,5,D,3,⁃,7,F,J,(,J=,5,4,3,2)和,5,D,4,⁃,7,F,J,′,(,J,′=6,5,4,3)等两组发射。不同温度下低掺样品的光谱测试表明,多声子弛豫对,5,D,3,能级发射的猝灭贡献有限。随着掺杂浓度增加,Tb,3+,离子,5,D,3,发射减弱而,5,D,4,发射增强,样品表现出从青光到绿光的光色调控性质,这主要是由Tb,3+,能级间的交叉弛豫过程导致的;进一步通过Inokuti⁃Hirayama模型和扩展的Yokota⁃Tanimoto模型对,5,D,3,发光衰减曲线进行拟合,结果表明能量传递的主要作用方式为电偶极⁃四极作用,临界传递距离约为1.03 nm。
Tb,3+,-doped K,3,La(PO,4,),2, phosphors with monoclinic structure have been prepared ,via, a high-temperature solid-state reaction method. The phase purity of samples is checked with X-ray diffraction (XRD) technique and the Rietveld refinement is performed using XRD data of the host compound. The temperature- and concentration- dependent luminescence properties of Tb,3+,-doped samples are further studied with spectral and decay measurements. Upon 373 nm excitation, Tb,3+,-doped K,3,La(PO,4,),2, phosphors display ,5,D,3,-,7,F,J,(,J,=5, 4, 3, 2) and ,5,D,4,-,7,F,J,′,(,J,′=6, 5, 4, 3) transitions at room temperature(RT). Temperature-dependent photoluminescence(PL) measurements for the sample with low Tb,3+, doping concentration indicate that multi-phonon relaxation(MPR) has limited contribution to the quenching of ,5,D,3, emission. As Tb,3+, concentration increases, the emission of ,5,D,4, is gradually enhanced while that of ,5,D,3, weakened, leading to the color tunability from cyan to green, which is mainly due to the cross-relaxation(CR) among Tb,3+, ions. The decay curves of ,5,D,3, emission are further analyzed and fitted with Inokuti-Hirayama and generalized Yokota-Tanimoto models, manifesting that the main interaction type in CR process is electric dipole-quadrupole(EDQ) coupling with critical interaction distance of ~1.03 nm.
Tb3+K3La(PO4)2发光能量传递多声子弛豫交叉弛豫
Tb3+K3La(PO4)2luminescenceenergy transfermulti-phonon relaxationcross-relaxation
VAN LOEF E V D, DORENBOS P, VAN EIJK C W E, et al. Scintillation properties of LaBr3∶Ce3+ crystals: fast, efficient and high-energy-resolution scintillators [J]. Nucl. Instru. Meth. Phys. Res. Sect. A, 2002, 486(1-2): 254-258. doi: 10.1016/s0168-9002(02)00712-xhttp://dx.doi.org/10.1016/s0168-9002(02)00712-x
梁宏斌, 田梓峰, 钟玖平, 等. Ce3+离子激活的(氟)磷酸盐基质发光材料的光谱特性 [J]. 发光学报, 2011, 32(5): 411-416. doi: 10.3788/fgxb20113205.0411http://dx.doi.org/10.3788/fgxb20113205.0411
LIANG H B, TIAN Z F, ZHONG J P, et al. Luminescence of Ce3+ activated(fluoro-) phosphates under VUV-UV and X-ray excitation [J]. Chin. J. Lumin., 2011, 32(5): 411-416. (in Chinese). doi: 10.3788/fgxb20113205.0411http://dx.doi.org/10.3788/fgxb20113205.0411
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material [J]. Nat. Mater., 2014, 13(9): 891-896. doi: 10.1038/nmat4012http://dx.doi.org/10.1038/nmat4012
WANG L, WANG X J, KOHSEI T, et al. Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays [J]. Opt. Express, 2015, 23(22): 28707-28717. doi: 10.1364/oe.23.028707http://dx.doi.org/10.1364/oe.23.028707
BLASSE G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
林惠红, 张国斌, 梁宏斌. 真空紫外光激发下Ce3+、Tb3+激活的BaCa2(BO3)2的发光性质 [J]. 发光学报, 2013, 34(3): 276-281. doi: 10.3788/fgxb20133403.0276http://dx.doi.org/10.3788/fgxb20133403.0276
LIN H H, ZHANG G B, LIANG H B. Luminescence of Ce3+, Tb3+ activated BaCa2(BO3)2 under vacuum ultraviolet excitation [J]. Chin. J. Lumin., 2013, 34(3): 276-281. (in Chinese). doi: 10.3788/fgxb20133403.0276http://dx.doi.org/10.3788/fgxb20133403.0276
孙晓园, 范小暄, 何俊杰, 等. CaLuBO4∶Tb3+荧光粉的制备及发光性质 [J]. 发光学报, 2020, 41(3): 265-270. doi: 10.3788/fgxb20204103.0265http://dx.doi.org/10.3788/fgxb20204103.0265
SUN X Y, FAN X X, HE J J, et al. Preparation and photoluminescence properties of CaLuBO4∶Tb3+ phosphor [J]. Chin. J. Lumin., 2020, 41(3): 265-270. (in Chinese). doi: 10.3788/fgxb20204103.0265http://dx.doi.org/10.3788/fgxb20204103.0265
VERSTEGEN J M P J, RADIELOVIC D, VRENKEN L E. A new generation of “deluxe” fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85 [J]. J. Electrochem. Soc., 1974, 121(12): 1627-1631. doi: 10.1149/1.2401757http://dx.doi.org/10.1149/1.2401757
BLASSE G. New luminescent materials [J]. Chem. Mater., 1989, 1(3): 294-301. doi: 10.1021/cm00003a005http://dx.doi.org/10.1021/cm00003a005
HAO Z D, ZHANG J H, ZHANG X, et al. Blue-green-emitting phosphor CaSc2O4∶Tb3+: tunable luminescence manipulated by cross-relaxation [J]. J. Electrochem. Soc., 2009, 156(3): H193-H196. doi: 10.1149/1.3060382http://dx.doi.org/10.1149/1.3060382
LIU Y F, ZHANG J X, ZHANG C H, et al. High efficiency green phosphor Ba9Lu2Si6O24∶Tb3+: visible quantum cutting via cross-relaxation energy transfers [J]. J. Phys. Chem. C, 2016, 120(4): 2362-2370. doi: 10.1021/acs.jpcc.5b11790http://dx.doi.org/10.1021/acs.jpcc.5b11790
FARMER J M, BOATNER L A, CHAKOUMAKOS B C, et al. Structural and crystal chemical properties of alkali rare-earth double phosphates [J]. J. Alloys Compd., 2016, 655: 253-265. doi: 10.1016/j.jallcom.2015.09.124http://dx.doi.org/10.1016/j.jallcom.2015.09.124
COELHO A A. Coelho Software, TOPAS Academic, Version 4 [CP]. Brisbane, Australia, 2005. doi: 10.1109/epia.2005.341234http://dx.doi.org/10.1109/epia.2005.341234
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst., 1976, A32: 751-767. doi: 10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
DORENBOS P. Exchange and crystal field effects on the 4fn-15d levels of Tb3+ [J]. J. Phys.: Condens. Matter, 2003, 15(36): 6249-6268. doi: 10.1088/0953-8984/15/36/313http://dx.doi.org/10.1088/0953-8984/15/36/313
林惠红, 梁宏斌, 苏锵, 等. Sr2Mg(BO3)2∶Tb3+的真空紫外发光性质 [J]. 光谱学与光谱分析, 2011, 31(7): 1743-1746. doi: 10.3964/j.issn.1000-0593(2011)07-1743-04http://dx.doi.org/10.3964/j.issn.1000-0593(2011)07-1743-04
LIN H H, LIANG H B, SU Q, et al. Luminescence of Sr2Mg(BO3)2∶Tb3+ under vacuum ultraviolet excitation [J]. Spectrosc. Spect. Anal., 2011, 31(7): 1743-1746. (in Chinese). doi: 10.3964/j.issn.1000-0593(2011)07-1743-04http://dx.doi.org/10.3964/j.issn.1000-0593(2011)07-1743-04
楼立人, 尹民, 李清庭. 发光物理基础: 固体光跃迁过程 [M]. 合肥: 中国科学技术大学出版社, 2014.
LOU L R, YIN M, LI Q T. Fundamentals of Luminescence Physics: Optical Transition Processes in Solids [M]. Hefei: University of Science and Technology of China Press, 2014. (in Chinese)
RISEBERG L A, MOOS H W. Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals [J]. Phys. Rev., 1968, 174(2): 429-438. doi: 10.1103/physrev.174.429http://dx.doi.org/10.1103/physrev.174.429
翁诗甫. 傅里叶变换红外光谱分析 [M]. 第2版. 北京: 化学工业出版社, 2010.
WENG S F. Fourier Translation Infrared Spectroscopy [M]. 2nd ed. Beijing: Chemical Industry Press, 2010. (in Chinese)
PELCZARSKA A, WATRAS A, GODLEWSKA P, et al. Structural, Raman, FT-IR and optical properties of Rb3Y2⁃(PO4)3 and Rb3La(PO4)2 doped with Eu3+ ions [J]. New J. Chem., 2015, 39(11): 8474-8483. doi: 10.1039/c5nj01235jhttp://dx.doi.org/10.1039/c5nj01235j
CAVALLI E, VOLKOVA E A. Structural effects on the emission dynamics of oxide crystals activated with Tb3+ [J]. J. Solid State Chem., 2021, 301: 122306. doi: 10.1016/j.jssc.2021.122306http://dx.doi.org/10.1016/j.jssc.2021.122306
MATRASZEK A, GODLEWSKA P, MACALIK L, et al. Optical and thermal characterization of microcrystalline Na3RE⁃(PO4)2∶Yb orthophosphates synthesized by Pechini method (RE=Y, La, Gd) [J]. J. Alloys Compd., 2015, 619: 275-283. doi: 10.1016/j.jallcom.2014.08.189http://dx.doi.org/10.1016/j.jallcom.2014.08.189
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG∶Ce [J]. Chem. Mater., 2009, 21(10): 2077-2084. doi: 10.1021/cm8030768http://dx.doi.org/10.1021/cm8030768
LAWRENCE T A, MURRA K A, MAY P S. Temperature dependence of rate constants for Tb3+(5D3) cross relaxation in symmetric Tb3+ pairs in Tb-doped CsCdBr3, CsMgBr3, CsMgCl3 [J]. J. Phys. Chem. B, 2003, 107(17): 4002-4011. doi: 10.1021/jp0270248http://dx.doi.org/10.1021/jp0270248
ZHOU W J, GU M, OU Y Y, et al. Concentration-driven selectivity of energy transfer channels and color tunability in Ba3La(PO4)3∶Tb3+, Sm3+ for warm white LEDs [J]. Inorg. Chem., 2017, 56(13): 7433-7442. doi: 10.1021/acs.inorgchem.7b00737http://dx.doi.org/10.1021/acs.inorgchem.7b00737
ZATRYB G, KLAK M M. On the choice of proper average lifetime formula for an ensemble of emitters showing non-single exponential photoluminescence decay [J]. J. Phys.: Condens. Matter, 2020, 32(41): 415902-1-11. doi: 10.1088/1361-648x/ab9bcchttp://dx.doi.org/10.1088/1361-648x/ab9bcc
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
尹民, 闻军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则 [J]. 发光学报, 2011, 32(7): 643-649. doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
YIN M, WEN J, DUAN C K. Transition selection rules of rare-earth in optical materials [J]. Chin. J. Lumin., 2011, 32(7): 643-649. (in Chinese). doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
MARTÍN I R, RODRÍGUEZ V D, RODRÍGUEZ-MENDOZA U R, et al. Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction [J]. J. Chem. Phys., 1999, 111(3): 1191-1194. doi: 10.1063/1.479304http://dx.doi.org/10.1063/1.479304
DUAN C K, KO C C, JIA G H, et al. 5D3-5D4 cross-relaxation of Tb3+ in a cubic host lattice [J]. Chem. Phys. Lett., 2011, 506(4-6): 179-182. doi: 10.1016/j.cplett.2011.03.002http://dx.doi.org/10.1016/j.cplett.2011.03.002
ZHANG X M, ZHANG Z, SEO H J. Photoluminescence and time-resolved luminescence spectroscopy of novel NaBa4⁃(BO3)3∶Tb3+ phosphor [J]. J. Alloys Compd., 2011, 509(14): 4875-4877. doi: 10.1016/j.jallcom.2011.01.195http://dx.doi.org/10.1016/j.jallcom.2011.01.195
BODENSCHATZ N, WANNEMACHER R, HEBER J, et al. Electronically resonant optical cross relaxation in YAG∶Tb3+ [J]. J. Lumin., 1990, 47(4): 159-167. doi: 10.1016/0022-2313(90)90027-9http://dx.doi.org/10.1016/0022-2313(90)90027-9
BORUC Z, FETLINSKI B, KACZKAN M, et al. Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals [J]. J. Alloys Compd., 2012, 532: 92-97. doi: 10.1016/j.jallcom.2012.04.017http://dx.doi.org/10.1016/j.jallcom.2012.04.017
DOS SANTOS J F M, ZANUTO V S, SOARES A C C, et al. Evaluating the link between blue-green luminescence and cross-relaxation processes in Tb3+-doped glasses [J]. J. Lumin., 2021, 240: 118430. doi: 10.1016/j.jlumin.2021.118430http://dx.doi.org/10.1016/j.jlumin.2021.118430
YOKOTA M, TANIMOTO O. Effects of diffusion on energy transfer by resonance [J]. J. Phys. Soc. Japan, 1967, 22(3): 779-784. doi: 10.1143/jpsj.22.779http://dx.doi.org/10.1143/jpsj.22.779
LUO Z D, HUANG Y D. Physics of Solid‐state Laser Materials [M]. Singapore: Springer, 2020. doi: 10.1007/978-981-32-9668-8http://dx.doi.org/10.1007/978-981-32-9668-8
ZHOU W J, HOU D J, PAN F J, et al. VUV-Vis photoluminescence, X-ray radioluminescence and energy transfer dynamics of Ce3+ and Pr3+ doped LiCaBO3 [J]. J. Mater. Chem. C, 2015, 3(35): 9161-9169. doi: 10.1039/c5tc01834jhttp://dx.doi.org/10.1039/c5tc01834j
0
Views
159
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution