浏览全部资源
扫码关注微信
1.闽江学院 材料与化学工程学院, 福建 福州 350108
2.福建工程学院 材料科学与工程学院, 福建 福州 350118
3.闽江学院 物理与电子信息工程学院, 福建 福州 350108
Published:05 August 2022,
Received:03 May 2022,
Revised:23 May 2022,
扫 描 看 全 文
丁梦宇,郑标,魏维平等.单分散CsPbBr3@SiO2纳米颗粒制备及其在柔性显示与荧光防伪中的应用[J].发光学报,2022,43(08):1309-1318.
DING Meng-yu,ZHENG Biao,WEI Wei-ping,et al.Synthesis of Monodisperse CsPbBr3@SiO2 Nanoparticles for Flexible Display and Anti-counterfeiting[J].Chinese Journal of Luminescence,2022,43(08):1309-1318.
丁梦宇,郑标,魏维平等.单分散CsPbBr3@SiO2纳米颗粒制备及其在柔性显示与荧光防伪中的应用[J].发光学报,2022,43(08):1309-1318. DOI: 10.37188/CJL.20220156.
DING Meng-yu,ZHENG Biao,WEI Wei-ping,et al.Synthesis of Monodisperse CsPbBr3@SiO2 Nanoparticles for Flexible Display and Anti-counterfeiting[J].Chinese Journal of Luminescence,2022,43(08):1309-1318. DOI: 10.37188/CJL.20220156.
为了提高钙钛矿纳米晶CsPb
X
3
(
X
=Cl, Br, I)在水或热等环境中的稳定性,本文采用热注射法合成了3‐氨丙基‐三乙氧基硅烷(APTES)修饰的CsPbBr
3
纳米晶,在此基础上,以正硅酸四甲基酯(TMOS)为硅源制备了CsPbBr
3
@SiO
2
核壳结构纳米颗粒。通过X射线衍射、透射电子显微镜和荧光光谱仪等测试手段对样品的结构、形貌、光谱特性及稳定性等进行了分析。结果表明,CsPbBr
3
纳米晶表面形成了SiO
2
壳层,同时,CsPbBr
3
@SiO
2
纳米颗粒仍保持优异的光学性能。更重要的是,SiO
2
壳层显著提高了CsPbBr
3
的水、热稳定性,CsPbBr
3
@SiO
2
在60 ℃加热30 min后发光强度可以保持初始强度的81%,浸水100 min后发光强度仍保持初始强度的75.2%。此外,我们设计了CsPbBr
3
@SiO
2
‐聚二甲基硅氧烷(PDMS)复合薄膜,实现了CsPbBr
3
@SiO
2
在柔性显示与荧光防伪方面的应用,有望为柔性显示和荧光防伪材料的开发提供参考。
To improve the stabilities of all-inorganic perovskite nanocrystals(NCs) CsPb
X
3
(
X
=Cl, Br, I) under water or thermal conditions, 3-aminopropyl-triethoxysilane(APTES) modified CsPbBr
3
NCs were synthesized by a hot-injection method, and then CsPbBr
3
@SiO
2
core-shell nanoparticles(NPs) were prepared by using tetramethyl orthosilicate(TMOS) as silicon source. The structures, morphologies, optical properties and stabilities of the CsPbBr
3
@SiO
2
samples were characterized and analyzed by X-ray diffractions, transmission electron microscopy and fluorescence spectrometer. The results show that the SiO
2
shell forms uniformly on surface of CsPbBr
3
NCs, which still shows excellent optical properties. More importantly, the stabilities of CsPbBr
3
@SiO
2
NPs are significantly improved in water or thermal atmosphere. The photoluminescence intensity of CsPbBr
3
@SiO
2
remains 81% under heated at 60 ℃ for 30 min, and it remains 75.2% when mixed with water for 100 min. Furthermore, we fabricated CsPbBr
3
@SiO
2
-polydimethylsiloxane(PDMS) composite films to explore the applications of CsPbBr
3
@SiO
2
in the field of flexible display and fluorescent anti-counterfeiting.
钙钛矿纳米晶核壳结构光学性能柔性显示荧光防伪
perovskite nanocrystalscore-shell structureoptical propertiesflexible displayfluorescent anti-counterfeiting
WANG B, ZHANG C Y, ZHENG W L, et al. Large-scale synthesis of highly luminescent perovskite nanocrystals by template-assisted solid-state reaction at 800 ℃ [J]. Chem. Mater., 2020, 32(1): 308-314. doi: 10.1021/acs.chemmater.9b03804http://dx.doi.org/10.1021/acs.chemmater.9b03804
LU P, LU M, WANG H, et al. Metal halide perovskite nanocrystals and their applications in optoelectronic devices [J]. InfoMat, 2019, 1(4): 430-459. doi: 10.1002/inf2.12031http://dx.doi.org/10.1002/inf2.12031
曾海波, 董宇辉. 钙钛矿量子点: 机遇与挑战 [J]. 发光学报, 2020, 41(8): 940-944. doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
ZENG H B, DONG Y H. Perovskite quantum dots: opportunities and challenges [J]. Chin. J. Lumin., 2020, 41(8): 940-944. (in Chinese). doi: 10.37188/fgxb20204108.0940http://dx.doi.org/10.37188/fgxb20204108.0940
MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598. doi: 10.1038/s41586-021-03997-zhttp://dx.doi.org/10.1038/s41586-021-03997-z
郭洁, 陆敏, 孙思琪, 等. 基于CsPbBr3钙钛矿量子点的高柔性绿光发光二极管 [J]. 发光学报, 2020, 41(3): 233-240. doi: 10.3788/fgxb20204103.0233http://dx.doi.org/10.3788/fgxb20204103.0233
GUO J, LU M, SUN S Q, et al. Highly flexible green light-emitting diode based on CsPbBr3 perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(3): 233-240. (in English). doi: 10.3788/fgxb20204103.0233http://dx.doi.org/10.3788/fgxb20204103.0233
刘鲲鹏, 刘德烨, 刘凤敏. 全无机钙钛矿太阳能电池湿度稳定性和光热稳定性研究进展 [J]. 发光学报, 2021, 42(4): 486-503. doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
LIU K P, LIU D Y, LIU F M. Research progress in humidity stability and light-thermal stability of all-inorganic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(4): 486-503. (in Chinese). doi: 10.37188/CJL.20200343http://dx.doi.org/10.37188/CJL.20200343
LIU Y F, TANG X S, ZHU T, et al. All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection [J]. J. Mater. Chem. C, 2018, 6(17): 4793-4799. doi: 10.1039/c8tc00249ehttp://dx.doi.org/10.1039/c8tc00249e
SCHÜNEMANN S, VAN GASTEL M, TÜYSÜZ H. A CsPbBr3/TiO2 composite for visible-light-driven photocatalytic benzyl alcohol oxidation [J]. ChemSusChem, 2018, 11(13): 2057-2061. doi: 10.1002/cssc.201800679http://dx.doi.org/10.1002/cssc.201800679
LI X M, YU D J, CAO F, et al. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability [J]. Adv. Funct. Mater., 2016, 26(32): 5903-5912. doi: 10.1002/adfm.201601571http://dx.doi.org/10.1002/adfm.201601571
MING H, LIU L L, HE S A, et al. An ultra-high yield of spherical K2NaScF6∶Mn4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays [J]. J. Mater. Chem. C, 2019, 7(24): 7237-7248. doi: 10.1039/c9tc02295chttp://dx.doi.org/10.1039/c9tc02295c
LOU S Q, XUAN T T, YU C Y, et al. Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability [J]. J. Mater. Chem. C, 2017, 5(30): 7431-7435. doi: 10.1039/c7tc01174ahttp://dx.doi.org/10.1039/c7tc01174a
ROMAN B J, OTTO J, GALIK C, et al. Au exchange or Au deposition: dual reaction pathways in Au-CsPbBr3 heterostructure nanoparticles [J]. Nano Lett., 2017, 17(9): 5561-5566. doi: 10.1021/acs.nanolett.7b02355http://dx.doi.org/10.1021/acs.nanolett.7b02355
SUN R, LU P, ZHOU D L, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes [J]. ACS Energy Lett., 2020, 5(7): 2131-2139. doi: 10.1021/acsenergylett.0c00931http://dx.doi.org/10.1021/acsenergylett.0c00931
HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene [J]. J. Am. Chem. Soc., 2016, 138(18): 5749-5752. doi: 10.1021/jacs.5b13101http://dx.doi.org/10.1021/jacs.5b13101
陈肖慧, 季思航, 袁曦, 等. Mn掺杂CsPbCl3钙钛矿量子点的发光性 [J]. 发光学报, 2018, 39(5): 609-614. doi: 10.3788/fgxb20183905.0609http://dx.doi.org/10.3788/fgxb20183905.0609
CHEN X H, JI S H, YUAN X, et al. Photoluminescence properties of Mn doped CsPbCl3 perovskite quantum dots [J]. Chin. J. Lumin., 2018, 39(5): 609-614. (in Chinese). doi: 10.3788/fgxb20183905.0609http://dx.doi.org/10.3788/fgxb20183905.0609
MUBIAYI K P, MOLOTO N, MOLOTO M J. Effect of diphenylphosphinic acid on cesium lead iodide perovskite stability [J]. CrystEngComm, 2018, 20(35): 5275-5280. doi: 10.1039/c8ce00934ahttp://dx.doi.org/10.1039/c8ce00934a
KIM Y H, LEE H, KANG S M, et al. Two-step-enhanced stability of quantum dots via silica and siloxane encapsulation for the long-term operation of light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2019, 11(25): 22801-22808. doi: 10.1021/acsami.9b06987http://dx.doi.org/10.1021/acsami.9b06987
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites(MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angew. Chem. Int. Ed., 2016, 55(28): 7924-7929. doi: 10.1002/anie.201603698http://dx.doi.org/10.1002/anie.201603698
SUN C, ZHANG Y, RUAN C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots [J]. Adv. Mater., 2016, 28(45): 10088-10094. doi: 10.1002/adma.201603081http://dx.doi.org/10.1002/adma.201603081
ZHAO H F, WEI L F, ZENG P, et al. Formation of highly uniform thinly-wrapped CsPbX3@silicone nanocrystals via self-hydrolysis: suppressed anion exchange and superior stability in polar solvents [J]. J. Mater. Chem. C, 2019, 7(32): 9813-9819. doi: 10.1039/c9tc01216hhttp://dx.doi.org/10.1039/c9tc01216h
MENG C F, YANG D D, WU Y, et al. Synthesis of single CsPbBr3@SiO2 core‐shell particles via surface activation [J]. J. Mater. Chem. C, 2020, 8(48): 17403-17409. doi: 10.1039/d0tc03932bhttp://dx.doi.org/10.1039/d0tc03932b
MØLLER C K. Crystal structure and photoconductivity of cæsium plumbohalides [J]. Nature, 1958, 182(4647): 1436. doi: 10.1038/1821436a0http://dx.doi.org/10.1038/1821436a0
ZHONG Q X, CAO M H, HU H C, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core‐shell nanoparticles [J]. ACS Nano, 2018, 12(8): 8579-8587. doi: 10.1021/acsnano.8b04209http://dx.doi.org/10.1021/acsnano.8b04209
SONG W T, WANG Y M, WANG B, et al. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation [J]. Nano Res., 2020, 13(3): 795-801. doi: 10.1007/s12274-020-2697-9http://dx.doi.org/10.1007/s12274-020-2697-9
陈天聚. 钙钛矿纳米晶SiO2包覆策略的构建及其SiO2层界面改性研究 [D]. 漳州: 闽南师范大学, 2021.
CHEN T J. Construction of Coating Strategy of Perovskite Nanocrystalline SiO2 and Study on Interface Modification of SiO2 Layer [D]. Zhangzhou: Minnan Normal University, 2021. (in Chinese)
DING N, ZHOU D L, SUN X K, et al. Highly stable and water-soluble monodisperse CsPbX3/SiO2 nanocomposites for white-LED and cells imaging [J]. Nanotechnology, 2018, 29(34): 345703-1-7. doi: 10.1088/1361-6528/aac84dhttp://dx.doi.org/10.1088/1361-6528/aac84d
YARITA N, TAHARA H, IHARA T, et al. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy [J]. J. Phys. Chem. Lett., 2017, 8(7): 1413-1418. doi: 10.1021/acs.jpclett.7b00326http://dx.doi.org/10.1021/acs.jpclett.7b00326
HUANG H, SUSHA A S, KERSHAW S V, et al. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature [J]. Adv. Sci., 2015, 2(9): 1500194-1-5. doi: 10.1002/advs.201500194http://dx.doi.org/10.1002/advs.201500194
LI M, ZHANG X, YANG P. Controlling the growth of a SiO2 coating on hydrophobic CsPbBr3 nanocrystals towards aqueous transfer and high luminescence [J]. Nanoscale, 2021, 13(6): 3860-3867. doi: 10.1039/d0nr08325ahttp://dx.doi.org/10.1039/d0nr08325a
KIM H C, HONG H G, YOON C, et al. Fabrication of high quantum yield quantum dot/polymer films by enhancing dispersion of quantum dots using silica particles [J]. J. Colloid Interface Sci., 2013, 393: 74-79. doi: 10.1016/j.jcis.2012.10.045http://dx.doi.org/10.1016/j.jcis.2012.10.045
PARK D H, HAN J S, KIM W, et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut [J]. Dyes Pigm., 2018, 149: 246-252. doi: 10.1016/j.dyepig.2017.10.003http://dx.doi.org/10.1016/j.dyepig.2017.10.003
YANG W Q, GAO F, QIU Y, et al. CsPbBr3-quantum-dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs [J]. Adv. Opt. Mater., 2019, 7(13): 1900546-1-12. doi: 10.1002/adom.201970048http://dx.doi.org/10.1002/adom.201970048
ZHANG J B, FAN L W, LI J L, et al. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system [J]. Nano Res., 2019, 12(1): 121-127. doi: 10.1007/s12274-018-2190-xhttp://dx.doi.org/10.1007/s12274-018-2190-x
MO Q H, SHI T C, CAI W S, et al. Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission [J]. Photonics Res., 2020, 8(10): 1605-1612. doi: 10.1364/prj.399845http://dx.doi.org/10.1364/prj.399845
TRINH C K, LEE H, SO M G, et al. Synthesis of chemically stable ultrathin SiO2-coated core-shell perovskite QDs via modulation of ligand binding energy for all-solution-processed light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2021, 13(25): 29798-29808. doi: 10.1021/acsami.1c06097http://dx.doi.org/10.1021/acsami.1c06097
郭珊珊. 基于全无机钙钛矿量子点和复合材料的白光LED的研究 [D]. 温州: 温州大学, 2019.
GUO S S. Study on White LED Based on All-inorganic Perovskite Quantum Dots and Composite Materials [D]. Wenzhou: Wenzhou University, 2019. (in Chinese)
0
Views
239
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution