National Key Research and Development Program(2021YFB3600101);the NSFC(61874090);Natural Science Foundation of Fujian Province(2021J01008);Key scientific and technological Program of Xiamen(3502Z20191016)
WANG Yong-jia,YANG Xu,LI Jin-chai,et al.Design of InGaN/GaN MQWs Structures for Monolithic Phosphor-free White LEDs Based on GaN Micro-arrays[J].Chinese Journal of Luminescence,2022,43(07):1130-1138.
WANG Yong-jia,YANG Xu,LI Jin-chai,et al.Design of InGaN/GaN MQWs Structures for Monolithic Phosphor-free White LEDs Based on GaN Micro-arrays[J].Chinese Journal of Luminescence,2022,43(07):1130-1138. DOI: 10.37188/CJL.20220115.
Design of InGaN/GaN MQWs Structures for Monolithic Phosphor-free White LEDs Based on GaN Micro-arrays增强出版
The carrier concentration, spontaneous emission recombination rate and polarization field of dual-wavelength stacked
c
-plane InGaN/GaN multiple quantum wells(MQWs) light emitting diode(LED) are simulated with Crosslight APSYS software. The results show that the distribution of carriers, especially holes, in InGaN MQWs can be modified by adjusting the thickness of the well layer and barrier layer. Thus, the illumination in different spectral regimes can be balanced. Furthermore, the optical properties of semipolar InGaN/GaN LEDs with stacked MQWs grown under the same epitaxial conditions are analyzed. Finally, monolithic phosphor-free white LEDs with triple- wavelength stacked MQWs based on GaN micro arrays are proposed, in which the micro arrays consist of {1011} or {1122} semipolar facets and
c
faces. By adjusting the proportion of
c
-plane illumination, a white LED with color temperature of ~6 000 K and high color rendering index of ~91.3 can be achieved.
关键词
单芯片白光LED半极性面InGaN极化效应
Keywords
monolithic white LEDsemipolarplaneInGaNpolarization effect
references
VURGAFTMAN I,MEYER J R,RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys [J]. J. Appl. Phys., 2001,89(11):5815-5875. doi: 10.1063/1.1368156http://dx.doi.org/10.1063/1.1368156
KRAMES M R,SHCHEKIN O B,MUELLER-MACH R,et al. Status and future of high-power light-emitting diodes for solid-state lighting [J]. J. Display Technol., 2007,3(2):160-175. doi: 10.1109/jdt.2007.895339http://dx.doi.org/10.1109/jdt.2007.895339
HUMPHREYS C J. Solid-state lighting [J]. MRS Bull., 2008,33(4):459-470. doi: 10.1557/mrs2008.91http://dx.doi.org/10.1557/mrs2008.91
CHO J,PARK J H,KIM J K,et al. White light-emitting diodes:history,progress,and future [J]. Laser Photonics Rev., 2017,11(2):1600147-1-17. doi: 10.1002/lpor.201600147http://dx.doi.org/10.1002/lpor.201600147
GEORGE N C,DENAULT K A,SESHADRI R. Phosphors for solid-state white lighting [J]. Annu. Rev. Mater. Res., 2013,43:481-501. doi: 10.1146/annurev-matsci-073012-125702http://dx.doi.org/10.1146/annurev-matsci-073012-125702
YAMADA M,NARUKAWA Y,MUKAI T. Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well [J]. Jpn. J. Appl. Phys., 2002,41(3A):L246-L248. doi: 10.1143/jjap.41.l246http://dx.doi.org/10.1143/jjap.41.l246
LU C F,HUANG C F,CHEN Y S,et al. Phosphor-free monolithic white-light LED [J]. IEEE J. Select. Top. Quantum Electron., 2009,15(4):1210-1217. doi: 10.1109/jstqe.2009.2013184http://dx.doi.org/10.1109/jstqe.2009.2013184
LI Y C,CHANG L B,CHEN H J,et al. Phosphor-free InGaN white light emitting diodes using flip-chip technology [J]. Materials, 2017,10(4):432-1-11. doi: 10.3390/ma10040432http://dx.doi.org/10.3390/ma10040432
MEIER J,BACHER G. Progress and challenges of InGaN/GaN-based core-shell microrod LEDs [J]. Materials, 2022,15(5):1626-1-15. doi: 10.3390/ma15051626http://dx.doi.org/10.3390/ma15051626
LU W F,ITO K,SONE N,et al. Color-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures [J]. Appl. Surf. Sci., 2021,539:148279-1-9. doi: 10.1016/j.apsusc.2020.148279http://dx.doi.org/10.1016/j.apsusc.2020.148279
YANG G F,ZHANG Q,WANG J,et al. InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphor-free white light-emitting diodes [J]. Rev. Phys., 2016,1:101-119. doi: 10.1016/j.revip.2016.06.001http://dx.doi.org/10.1016/j.revip.2016.06.001
ZHAO J,WEI T B,ZHANG J,et al. Phosphor-free three-dimensional hybrid white LED with high color-rendering index [J]. IEEE Photonics J., 2019,11(3):8200608-1-8. doi: 10.1109/jphot.2019.2913869http://dx.doi.org/10.1109/jphot.2019.2913869
WU Z L,CHEN P,YANG G F,et al. Morphology evolution and emission properties of InGaN/GaN multiple quantum wells grown on GaN microfacets using crossover stripe patterns by selective area epitaxy [J]. Appl. Surf. Sci., 2015,331:444-448. doi: 10.1016/j.apsusc.2015.01.104http://dx.doi.org/10.1016/j.apsusc.2015.01.104
DAVID A,GRUNDMANN M J,KAEDING J F,et al. Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes [J]. Appl. Phys. Lett., 2008,92(5):053502-1-3. doi: 10.1063/1.2839305http://dx.doi.org/10.1063/1.2839305
CHO J,SCHUBERT E F,KIM J K. Efficiency droop in light-emitting diodes:challenges and countermeasures [J]. Laser Photonics Rev., 2013,7(3):408-421. doi: 10.1002/lpor.201200025http://dx.doi.org/10.1002/lpor.201200025
SAHA M,BISWAS A,KARAN H. Monolithic high performance InGaN/GaN white LEDs with a tunnel junction cascaded yellow and blue light-emitting structures [J]. Opt. Mater., 2018,77:104-110. doi: 10.1016/j.optmat.2018.01.021http://dx.doi.org/10.1016/j.optmat.2018.01.021
LU S Q,LI J C,HUANG K,et al. Designs of InGaN micro-LED structure for improving quantum efficiency at low current density [J]. Nanoscale Res. Lett., 2021,16(1):99-1-16. doi: 10.1186/s11671-021-03557-4http://dx.doi.org/10.1186/s11671-021-03557-4
FIORENTINI V,BERNARDINI F,AMBACHER O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures [J]. Appl. Phys. Lett., 2002,80(7):1204-1206. doi: 10.1063/1.1448668http://dx.doi.org/10.1063/1.1448668
BASU P K. Theory of Optical Processes in Semiconductors:Bulk and Microstructures [M]. Oxford:Clarendon Press, 2003. doi: 10.1093/acprof:oso/9780198526209.003.0002http://dx.doi.org/10.1093/acprof:oso/9780198526209.003.0002
ZHOU L,DIMAKIS E,HATHWAR R,et al. Measurement and effects of polarization fields on one-monolayer-thick InN/GaN multiple quantum wells [J]. Phys. Rev. B, 2013,88(12):125310-1-5. doi: 10.1103/physrevb.88.125310http://dx.doi.org/10.1103/physrevb.88.125310
USMAN M,ANWAR A R,MUNSIF M. Review—a survey of simulations on device engineering of GaN-based light-emitting diodes [J]. ECS J. Solid State Sci. Technol., 2020,9(6):066002-1-17. doi: 10.1149/2162-8777/aba1cchttp://dx.doi.org/10.1149/2162-8777/aba1cc
SHEN X Y,WU Z Y,LI J C,et al. Phosphor-free white emission from InGaN quantum wells grown on in situ formed submicron-scale multifaceted GaN stripes [J]. J. Alloys Compd., 2019,775:752-757. doi: 10.1016/j.jallcom.2018.09.293http://dx.doi.org/10.1016/j.jallcom.2018.09.293
LEE M L,YEH Y H,TU S J,et al. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids [J]. Opt. Express, 2015,23(7):A401-A412. doi: 10.1364/oe.23.00a401http://dx.doi.org/10.1364/oe.23.00a401
Simulation on Nitrogen-polar InGaN-based Red Light-emitting Diodes with Compositionally Graded Quantum Barrier Layer
n-i-p Type InGaN Solar Cells with Graded In Composition
Effect of p-InGaN Layer Thickness on The Performance of p-i-n InGaN Solar Cells
Transient Analysis of InGaN/GaN Light-emitting Diode with Varied Quantum Well Number
Related Author
Yong-jia WANG
Xu YANG
Jin-chai LI
Kai HUANG
Jun-yong KANG
JI Zeting
DENG Gaoqiang
WANG Yusen
Related Institution
Future Display Institue of Xiamen, Tan Kah Kee Innovation Laboratory
Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University
College of Physics, Jilin University
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
Research Center for Wide Gap Semiconductor, School of Physics, Peking University