浏览全部资源
扫码关注微信
上海理工大学 材料与化学学院, 上海 200093
Published:05 June 2022,
Received:01 March 2022,
Revised:14 March 2022,
扫 描 看 全 文
魏瑶琪,全家乐,赵庆强等.一种基于n-ZnS/p-CuSCN纳米薄膜的高开关比和稳定性紫外光电探测器[J].发光学报,2022,43(06):911-921.
WEI Yao-qi,QUAN Jia-le,ZHAO Qing-qiang,et al.A Stable UV Photodetector Based on n-ZnS/p-CuSCN Nanofilm with High On/Off Ratio[J].Chinese Journal of Luminescence,2022,43(06):911-9211.
魏瑶琪,全家乐,赵庆强等.一种基于n-ZnS/p-CuSCN纳米薄膜的高开关比和稳定性紫外光电探测器[J].发光学报,2022,43(06):911-921. DOI: 10.37188/CJL.20220069.
WEI Yao-qi,QUAN Jia-le,ZHAO Qing-qiang,et al.A Stable UV Photodetector Based on n-ZnS/p-CuSCN Nanofilm with High On/Off Ratio[J].Chinese Journal of Luminescence,2022,43(06):911-9211. DOI: 10.37188/CJL.20220069.
通过原位生长法制备了一种CuSCN纳米薄膜紫外光电探测器,在-1 V 偏压下,入射光为350 nm时, CuSCN紫外光电探测器的开关比~94,响应/恢复时间~1.41 s/1.44 s。但这种器件仍不能称之为一种高性能的光电探测器。为进一步提高CuSCN纳米薄膜的光电性能,我们制备了一种基于 n-ZnS/p-CuSCN 复合薄膜的紫外光电探测器,并对制备的样品进行了形貌、成分和性能分析。结果显示,在-1 V 偏压下,入射波长为350 nm时, ZnS/CuSCN紫外光电探测器表现出比CuSCN紫外光电探测器更高的光电流和更低的暗电流,分别为1.22×10
-5
A和4.8×10
-9
A。基于ZnS/CuSCN 纳米薄膜的紫外光电探测器开关比-2 542,响应/恢复时间为0.47 s/0.48 s,在350 nm波长下具备最佳的响应度和探测率,分别为5.17 mA/W和1.32 × 10
11
Jones。此外,n-ZnS/p-CuSCN复合薄膜在室温下性能稳定,具有作为高性能紫外探测器的潜力。
Herein, We fabricated a CuSCN nanofilm ultraviolet(UV) photodetector(PD) using an
in situ
growth method. When the bias is -1 V and the incident light is 350 nm, the on/off ratio of the CuSCN PD is ~94, and the rise/decay time is ~1.41 s/1.44 s. However, such a device still cannot be called a high-performance photodetector. To improve the optoelectronic properties of CuSCN nanofilm further, we fabricated a UV photodetector based on n-ZnS/p-CuSCN composite nanofilm and analyzed its morphology, composition, and properties. The photocurrent and dark current of the ZnS/CuSCN UV photodetectors are 1.22×10
-5
A and 4.8×10
-9
A, respectively(at -1 V, 350 nm). The ZnS/CuSCN nanofilms' on/off ratio of ~2 542 and rise/decay time is 0.47 s/0.48 s. Besides, the n-ZnS/p-CuSCN nanofilm UV PDs have the best responsivity and detectivity at 350 nm with 5.17 mA/W and 1.32 × 10
11
Jones, respectively. In addition, the n-ZnS/p-CuSCN composite film is stable at room temperature, which indicates its great potential as a high-performance UV photodetector.
光电探测器p-n结ZnS/CuSCN开关比
photodetectorp-n junctionZnS/CuSCNon/off ratio
韩悦,李国辉,梁强兵,等. 全无机钙钛矿CsPbX3纳米晶的研究进展 [J]. 发光学报, 2020,41(5):542-556. doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
HAN Y,LI G H,LIANG Q B,et al. Advances of all-inorganic perovskite CsPbX3 nanocrystals [J]. Chin. J. Lumin., 2020,41(5):542-556. (in Chinese). doi: 10.3788/fgxb20204105.0542http://dx.doi.org/10.3788/fgxb20204105.0542
张翼鹏,王雪,纪佩璇,等. 不同响应机制下的石墨烯基光电探测器研究进展 [J]. 发光学报, 2022,43(4):552-575. doi: 10.37188/CJL.20210359http://dx.doi.org/10.37188/CJL.20210359
ZHANG Y P,WANG X,JI P X,et al. Research progress of graphene based photodetectors under different response mechanisms [J]. Chin. J. Lumin., 2022,43(4):552-575. (in Chinese). doi: 10.37188/CJL.20210359http://dx.doi.org/10.37188/CJL.20210359
CHEN J X,OUYANG W X,YANG W,et al. Recent progress of heterojunction ultraviolet photodetectors:materials,integrations,and applications [J]. Adv. Funct. Mater., 2020,30(16):1909909. doi: 10.1002/adfm.201909909http://dx.doi.org/10.1002/adfm.201909909
SHAO D L,QIN L Q,SAWYER S. Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles [J]. Appl. Surf. Sci., 2012,261:123-127. doi: 10.1016/j.apsusc.2012.07.111http://dx.doi.org/10.1016/j.apsusc.2012.07.111
CAI S,XU X J,YANG W,et al. Materials and designs for wearable photodetectors [J]. Adv. Mater., 2019,31(18):1808138-1-15. doi: 10.1002/adma.201808138http://dx.doi.org/10.1002/adma.201808138
SANG L W,LIAO M Y,SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors:from thin film to one-dimensional nanostructures [J]. Sensors(Basel), 2013,13(8):482-518. doi: 10.3390/s130810482http://dx.doi.org/10.3390/s130810482
CHEN H Y,LIU H,ZHANG Z M,et al. Nanostructured photodetectors:from ultraviolet to terahertz [J]. Adv. Mater., 2016,28(3):403-433. doi: 10.1002/adma.201503534http://dx.doi.org/10.1002/adma.201503534
XIA F N,MUELLER T,LIN Y M,et al. Ultrafast graphene photodetector [J]. Nat. Nanotechnol., 2009,4(12):839-843. doi: 10.1038/nnano.2009.292http://dx.doi.org/10.1038/nnano.2009.292
LIU L,YANG C,PATANÈ A,et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN [J]. Nanoscale, 2017,9(24):8142-8148. doi: 10.1039/c7nr01290jhttp://dx.doi.org/10.1039/c7nr01290j
李超群,陈洪宇,张振中,等. 电极间距对ZnO基MSM紫外光电探测器性能的影响 [J]. 发光学报, 2014,35(10):1172-1175. doi: 10.3788/fgxb20143510.1172http://dx.doi.org/10.3788/fgxb20143510.1172
LI C Q,CHEN H Y,ZHANG Z Z,et al. Effect of electrode spacing on the properties of ZnO based MSM ultraviolet photodetector [J]. Chin. J. Lumin., 2014,35(10):1172-1175. (in Chinese). doi: 10.3788/fgxb20143510.1172http://dx.doi.org/10.3788/fgxb20143510.1172
陈雪,魏志鹏. 具有高光开关比和高响应度的单根In2O3纳米线紫外光电晶体管 [J]. 发光学报, 2021,42(2):208-214. doi: 10.37188/CJL.20200376http://dx.doi.org/10.37188/CJL.20200376
CHEN X,WEI Z P. Single In2O3 nanowire ultraviolet phototransistor with high optical on-off ratio and high responsivity [J]. Chin. J. Lumin., 2021,42(2):208-214. (in Chinese). doi: 10.37188/CJL.20200376http://dx.doi.org/10.37188/CJL.20200376
HATCH S M,BRISCOE J,DUNN S. A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response [J]. Adv. Mater., 2013,25(6):867-871. doi: 10.1002/adma.201204488http://dx.doi.org/10.1002/adma.201204488
WYATT-MOON G,GEORGIADOU D G,SEMPLE J,et al. Deep ultraviolet Copper(Ⅰ) thiocyanate (CuSCN) photodetectors based on coplanar nanogap electrodes fabricated via adhesion lithography [J]. ACS Appl. Mater. Interfaces, 2017,9(48):41965-41972. doi: 10.1021/acsami.7b12942http://dx.doi.org/10.1021/acsami.7b12942
YANG Z,WANG M Q,DING J J,et al. Semi-transparent ZnO-CuI/CuSCN photodiode detector with narrow-band UV photoresponse [J]. ACS Appl. Mater. Interfaces, 2015,7(38):21235-21244. doi: 10.1021/acsami.5b05222http://dx.doi.org/10.1021/acsami.5b05222
KA I,GERLEIN L F,ASUO I M,et al. Solution-processed p-type copper thiocyanate(CuSCN) enhanced sensitivity of PbS-quantum-dots-based photodiode [J]. ACS Photonics, 2020,7(7):1628-1635. doi: 10.1021/acsphotonics.0c00491http://dx.doi.org/10.1021/acsphotonics.0c00491
YAN G H,JI Z,LI Z W,et al. All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging [J]. Sci. China. Mater., 2020,64(1):198-208. doi: 10.1007/s40843-020-1358-5http://dx.doi.org/10.1007/s40843-020-1358-5
HU K,TENG F,ZHENG L X,et al. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed [J]. Laser Photonics Rev., 2017,11(1):1600257-1-7. doi: 10.1002/lpor.201600257http://dx.doi.org/10.1002/lpor.201600257
YAN F G,WEI Z M,WEI X,et al. Toward high-performance photodetectors based on 2D materials:strategy on methods [J]. Small Methods, 2018,2(5):1700349-1-14. doi: 10.1002/smtd.201700349http://dx.doi.org/10.1002/smtd.201700349
YANG W,HU K,TENG F,et al. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type ⅡSe/n-Si heterojunctions [J]. Nano Lett., 2018,18(8):4697-4703. doi: 10.1021/acs.nanolett.8b00988http://dx.doi.org/10.1021/acs.nanolett.8b00988
HU K,CHEN H Y,JIANG M M,et al. Broadband photoresponse enhancement of a high-performance t-se microtube photodetector by plasmonic metallic nanoparticles [J]. Adv. Funct. Mater., 2016,26(36):6641-6648. doi: 10.1002/adfm.201602408http://dx.doi.org/10.1002/adfm.201602408
CHEN C,XIE X Q,ANASORI B,et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries [J]. Angew. Chem., 2018,57(7):1846-1850. doi: 10.1002/anie.201710616http://dx.doi.org/10.1002/anie.201710616
KWAK J Y,HWANG J,CALDERON B,et al. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts [J]. Nano Lett., 2014,14(8):4511-4516. doi: 10.1021/nl5015316http://dx.doi.org/10.1021/nl5015316
TIAN W,SUN H X,CHEN L,et al. Low-dimensional nanomaterial/Si heterostructure‐based photodetectors [J]. InfoMat., 2019,1(2):140-163.
LI X,GAO S Y,WANG G N,et al. A self-powered ultraviolet photodetector based on TiO2/Ag/ZnS nanotubes with high stability and fast response [J]. J. Mater. Chem. C, 2020,8(4):1353-1358. doi: 10.1039/c9tc05326chttp://dx.doi.org/10.1039/c9tc05326c
LI F,XIA Z G,LIU Q L. Controllable synthesis and optical properties of ZnS∶Mn2+/ZnS/ZnS∶Cu2+/ZnS core/multi-shell quantum dots towards efficient white light emission [J]. ACS Appl. Mater. Interfaces, 2017,9(11):9833-9839. doi: 10.1021/acsami.6b15997http://dx.doi.org/10.1021/acsami.6b15997
ARJUNAN S,KAVITHA H P,PONNUSAMY S,et al. ZnS/CuS nanocomposites: an effective strategy to transform UV active ZnS to UV and Vis light active ZnS [J]. J. Mater. Sci: Mater Electoron., 2016,27(9):9022-9033. doi: 10.1007/s10854-016-4935-1http://dx.doi.org/10.1007/s10854-016-4935-1
SEPALAGE G A,MEYER S,PASCOE A R,et al. A facile deposition method for CuSCN:exploring the influence of CuSCN on J⁃V hysteresis in planar perovskite solar cells [J]. Nano Energy, 2017,32:310-319. doi: 10.1016/j.nanoen.2016.12.043http://dx.doi.org/10.1016/j.nanoen.2016.12.043
ALTIN İ,POLAT İ,BACAKSIZ E,et al. ZnO and ZnS microrods coated on glass and photocatalytic activity [J]. Appl. Surf. Sci., 2012,258(11): 4861-4865. doi: 10.1016/j.apsusc.2012.01.082http://dx.doi.org/10.1016/j.apsusc.2012.01.082
ZHU Y,ZHANG Y F,YAN L M,et al. Novel ultraviolet photodetector with ultrahigh photosensitivity employing SILAR-deposited ZnS film on MgZnO [J]. J. Alloys Compd., 2020,832: 155022-1-7. doi: 10.1016/j.jallcom.2020.155022http://dx.doi.org/10.1016/j.jallcom.2020.155022
ZHANG K,DING J,LOU Z,et al. Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance [J]. Nanoscale, 2017,9(40): 15416-15422. doi: 10.1039/c7nr06118hhttp://dx.doi.org/10.1039/c7nr06118h
LIN H L,WEI L,WU C C,et al. High-performance self-powered photodetectors based on ZnO/ZnS core-shell nanorod arrays [J]. Nanoscale Res. Lett., 2016,11(1): 420-1-7. doi: 10.1186/s11671-016-1639-7http://dx.doi.org/10.1186/s11671-016-1639-7
KUANG W J,LIU X,LI Q,et al. Solution-processed solar-blind ultraviolet photodetectors based on ZnS quantum dots [J]. IEEE Photon. Technol. Lett., 2018,30(15): 1384-1387. doi: 10.1109/lpt.2018.2849345http://dx.doi.org/10.1109/lpt.2018.2849345
XIA Y,ZHAI G M,ZHENG Z,et al. Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots [J]. J. Mater. Chem. C, 2018,6(42): 11266-11271. doi: 10.1039/c8tc03977ahttp://dx.doi.org/10.1039/c8tc03977a
CHENG S D,HAN S C,CAO Z Y,et al. Wearable and ultrasensitive strain sensor based on high-quality GaN pn junction microwire arrays [J]. Small, 2020,16(16): 1907461-1-8. doi: 10.1002/smll.201907461http://dx.doi.org/10.1002/smll.201907461
GONG C H,CHU J W,QIAN S F,et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors [J]. Adv. Mater., 2020,32(12): 1908242-1-9. doi: 10.1002/adma.201908242http://dx.doi.org/10.1002/adma.201908242
KIM J H,RHO H,KIM J,et al. Raman spectroscopy of ZnS nanostructures [J]. J. Raman Spectrosc., 2012,43(7): 906-910. doi: 10.1002/jrs.3116http://dx.doi.org/10.1002/jrs.3116
HO C H,VARADHAN P,WANG H H,et al. Raman selection rule for surface optical phonons in ZnS nanobelts [J]. Nanoscale, 2016,8(11):5954-5958. doi: 10.1039/c5nr07268ahttp://dx.doi.org/10.1039/c5nr07268a
XIONG Q H,CHEN G,ACORD J D,et al. Optical properties of rectangular cross-sectional ZnS nanowires [J]. Nano Lett., 2004,4(9):1663-1668. doi: 10.1021/nl049169rhttp://dx.doi.org/10.1021/nl049169r
VIRIEUX H,LE TROEDEC M,CROS-GAGNEUX A,et al. InP/ZnS nanocrystals:coupling NMR and XPS for fine surface and interface description [J]. J. Am. Chem. Soc., 2012,134(48):19701-19708. doi: 10.1021/ja307124mhttp://dx.doi.org/10.1021/ja307124m
RAMACHANDRAN K,JEGANATHAN C,KARUPPUCHAMY S. Surfactant assisted electrochemical growth of ultra-thin CuSCN nanowires for inverted perovskite solar cell applications [J]. Org. Electron., 2021,95:106214-1-9. doi: 10.1016/j.orgel.2021.106214http://dx.doi.org/10.1016/j.orgel.2021.106214
TSAI C T,GOTTAM S R,KAO P C,et al. Improvement of OLED performances by applying annealing and surface treatment on electro-deposited CuSCN hole injection layer [J]. Synthetic. Met., 2020,269,116537-1-8. doi: 10.1016/j.synthmet.2020.116537http://dx.doi.org/10.1016/j.synthmet.2020.116537
JIANG H,PENG H,GUO H,et al. Interfacial mechanical strength enhancement for high-performance ZnS thin-film anodes [J]. ACS Appl. Mater. Interfaces, 2020,12(46):51344-51356. doi: 10.1021/acsami.0c13139http://dx.doi.org/10.1021/acsami.0c13139
DAI L W,STRELOW C,KIPP T,et al. Colloidal manganese-doped ZnS nanoplatelets and their optical properties [J]. Chem. Mater., 2021,33(1):275-284. doi: 10.1021/acs.chemmater.0c03755http://dx.doi.org/10.1021/acs.chemmater.0c03755
HASSAN S,BERA S,GUPTA D,et al. MoSe2-Cu2S vertical p-n nanoheterostructures for high-performance photodetectors [J]. ACS Appl. Mater. Interfaces, 2019,11(4):4074-4083. doi: 10.1021/acsami.8b16205http://dx.doi.org/10.1021/acsami.8b16205
张旭. 降低Si基有机光电探测器暗电流的研究 [J]. 甘肃科学学报, 2009,21(4):54-57. doi: 10.3969/j.issn.1004-0366.2009.04.014http://dx.doi.org/10.3969/j.issn.1004-0366.2009.04.014
ZHANG X. Study on the reduction of the dark current in Si-based organic photodetector [J]. J. Gansu Sci., 2009,21(4):54-57. (in Chinese). doi: 10.3969/j.issn.1004-0366.2009.04.014http://dx.doi.org/10.3969/j.issn.1004-0366.2009.04.014
CAI J,XU X J,SU L X,et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance [J]. Adv. Optical. Mater., 2018,6(15):1800213-1-7. doi: 10.1002/adom.201800213http://dx.doi.org/10.1002/adom.201800213
WANG Y C,WU C,GUO D Y,et al. All-oxide NiO/Ga2O3 p⁃n junction for self-powered UV photodetector [J]. ACS Appl. Electron. Mater., 2020,2(7):2032-2038. doi: 10.1021/acsaelm.0c00301http://dx.doi.org/10.1021/acsaelm.0c00301
DAI W,PAN X,CHEN C,et al. Enhanced UV detection performance using a Cu-doped ZnO nanorod array film [J]. RSC Adv., 2014,4(60):31969-31972. doi: 10.1039/c4ra04249bhttp://dx.doi.org/10.1039/c4ra04249b
XIN B,WU Y T,LIU X R,et al. High performance UV photodetector based on 2D non-layered CuGaS2 nanosheets [J]. Semicond. Sci. Technol., 2019,34(5):055007-1-5. doi: 10.1088/1361-6641/ab0bdfhttp://dx.doi.org/10.1088/1361-6641/ab0bdf
AGGARWAL N,KRISHNA S,SHARMA A,et al. A highly responsive self-driven UV photodetector using GaN nanoflowers [J]. Adv. Electron. Mater., 2017,3(5):1700036-1-7. doi: 10.1002/aelm.201700036http://dx.doi.org/10.1002/aelm.201700036
0
Views
235
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution