浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院,集成光电子学国家重点实验室吉林大学实验区,吉林 长春 130012
Published:01 April 2022,
Received:12 January 2022,
Revised:25 January 2022,
扫 描 看 全 文
Ge TANG, Shi-hao LIU, Le-tian ZHANG, et al. Single-layer Thermally Activated Delayed Fluorescent Organic Light-emitting Devices and Exciton Distribution Profiles. [J]. Chinese Journal of Luminescence 43(4):576-582(2022)
Ge TANG, Shi-hao LIU, Le-tian ZHANG, et al. Single-layer Thermally Activated Delayed Fluorescent Organic Light-emitting Devices and Exciton Distribution Profiles. [J]. Chinese Journal of Luminescence 43(4):576-582(2022) DOI: 10.37188/CJL.20220014.
单层结构对简化有机电致发光器件(OLED)的制备工艺及降低其制造成本具有重要意义。本文采用非掺杂热激活延迟荧光(TADF)发光层,结合C
60
(2 nm)/MoO
3
(3 nm)/C
60
(2 nm)修饰的ITO阳极及4
7-二苯基-1
10-菲啰啉(Bphen
3 nm)修饰的Ag 阴极,制备了单层TADF器件(TADF-OLED)。该单层TADF-OLED具有良好的空穴和电子注入能力,开启电压为3 V,最大电流、功率及外量子效率分别可达到37.7 cd/A、47.4 lm/W和13.24%。然后,我们利用“探针法”研究了该单层TADF-OLED的激子分布情况,发现大部分激子在发光层靠近阳极侧形成。最后,我们利用经典电磁学理论对器件的光取出效率进行模拟分析,证实了这种激子分布特性有助于实现较高的光取出效率,进而改善器件的外量子效率。
Developing single-layer structure is important to simplify fabrication processes and reduce manufacture costs of organic light-emitting devices(OLEDs). In this work
we develop an efficient single-layer thermal activation delayed fluorescence(TADF) OLED by combining a non-doped TADF emitting layer
a C
60
(2 nm)/MoO
3
(3 nm)/C
60
(2 nm) modified ITO anode and a 4
7-Diphenyl-1
10-phenanthroline(Bphen
3 nm) modified silver cathode. The single-layer TADF-OLED can achieve efficient hole and electron injection ability such that it has a low turn-on voltage of 3 V
a maximum current efficiency of 37.7 cd/A
a maximum power efficiency of 47.4 lm/W
and an external quantum efficiency of 13.24%. And then
we investigate the exciton distribution profile of the single-layer TADF-OLED by using a "probe" method. It is found that most excitons are formed at the emitting layer close to the anode. Finally
with the classical theory of electromagnetism
we simulate and analyze the outcoupling efficiency
and prove that this exciton distribution profile is beneficial to achieve higher outcoupling efficiency
and thus the external quantum efficiency of single-layer OLEDs.
单层有机发光器件热激活延迟荧光激子分布电极修饰层光取出效率
single-layer OLEDthermal activation delayed fluorescence(TADF)exciton distribution profileanode modified layeroutcoupling efficiency
李继军, 聂晓梦, 李根生, 等. 平板显示技术比较及研究进展 [J]. 中国光学, 2018, 11(5):695-710.
LI J J, NIE X M, LI G S, et al. Comparison and research progress of flat panel display technology [J]. Chin. Opt., 2018, 11(5):695-710. (in Chinese)
WANG H, ZANG C X, SHAN G G, et al. Bluish-green thermally activated delayed fluorescence material for blue-hazard free hybrid white organic light-emitting device with high color quality and low efficiency roll-off [J]. Adv. Opt. Mater., 2019, 7(9):1801718-1-9.
刘婷婷, 李淑红, 王文军, 等. 基于器件结构提高TADF-OLED器件的发光性能 [J]. 发光学报, 2020, 41(1):77-85.
LIU T T, LI S H, WANG W J, et al. Enhanced luminescent properties of TADF-OLEDs based on device structures [J]. Chin. J. Lumin., 2020, 41(1):77-85. (in Chinese)
张祥, 陈逸凡, 刘士浩, 等. 交流驱动的绿光透明有机电致发光器件 [J]. 发光学报, 2021, 42(2):153-157.
ZHANG X, CHEN Y F, LIU S H, et al. Alternating current driven green transparent organic light-emitting devices [J]. Chin. J. Lumin., 2021, 42(2):153-157. (in Chinese)
崔东岳, 王帅, 李淑红, 等. 调控空穴传输层的分子取向提高有机发光二极管性能 [J]. 发光学报, 2021, 42(5):691-699.
CUI D Y, WANG S, LI S H, et al. Improving performance of organic light-emitting diodes by tuning molecular orientation in hole transport layer [J]. Chin. J. Lumin., 2021, 42(5):691-699. (in Chinese)
PORIEL C, RAULT-BERTHELOT J. Designing host materials for the emissive layer of single-layer phosphorescent organic light-emitting diodes:toward simplified organic devices [J]. Adv. Funct. Mater., 2021, 31(24):2010547-1-4.
LUCAS F, QUINTON C, FALL S, et al. Universal host materials for red,green and blue high-efficiency single-layer phosphorescent organic light-emitting diodes [J]. J. Mater. Chem. C, 2015, 8(46):16354-16367.
JEON W S, PARK T J, KIM K H, et al. High efficiency red phosphorescent organic light-emitting diodes with single layer structure [J]. Org. Electron., 2010, 11(2):179-183.
KOTADIYA N B, BLOM P W M, WETZELAER G J A H. Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence [J]. Nat. Photonics, 2019, 13(11):765-769.
AMRUTH C, LUSZCZYNSKA B, SZYMANSKI M Z, et al. Inkjet printing of thermally activated delayed fluorescence(TADF) dendrimer for OLEDs applications [J]. Org. Electron., 2019, 74:218-227.
MALLIARAS G G, SALEM J R, BROCK P J, et al. Electrical characteristics and efficiency of single-layer organic light-emitting diodes [J]. Phys. Rev. B, 1998, 58(20):R13411-R13414.
NICOLAI H T, KUIK M, WETZELAER G A H, et al. Unification of trap-limited electron transport in semiconducting polymers [J]. Nat. Mater., 2012, 11(10):882-887.
KOTADIYA N B, LU H, MONDAL a, et al. Universal strategy for ohmic hole injection into organic semiconductors with high ionization energies [J]. Nat. Mater., 2018, 17(4):329-334.
LEE S Y, YASUDA T, NOMURA H, et al. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules [J]. Appl. Phys. Lett., 2012, 101(9):093306-1-4.
KIM T S, KOO Y M, JEONG H, et al. Significantly improved power efficiency of organic light-emitting diodes with surface dipole on anode and ohmic cathode contact [J]. Mol. Cryst. Liq. Cryst., 2007, 458(1):217-225.
KIM S H, JANG J. Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices [J]. Appl. Phys. Lett., 2006, 89(25):253501-1-3.
WEN X M, YIN Y M, LI Y, et al. Tandem white organic light-emitting device using non-modified Ag layer as cathode and interconnecting layer [J]. Org. Electron., 2014, 15(3):675-679.
LIU S H, ZANG C X, ZHANG J M, et al. Air-stable ultrabright inverted organic light-emitting devices with metal ion-chelated polymer injection layer [J]. Nano-Micro Lett., 2022, 14:14-1-11.
LIU S H, ZHANG X, YIN M J, et al. Coffee-ring-free ultrasonic spray coating single-emission layers for white organic light-emitting devices and their energy-transfer mechanism [J]. ACS Appl. Energy Mater., 2018, 1(1):103-112.
YU Z W, ZHANG J X, LIU S H, et al. High-efficiency blue phosphorescent organic light-emitting devices with low efficiency roll-off at ultrahigh luminance by the reduction of triplet-polaron quenching [J]. ACS Appl. Mater. Interfaces, 2019, 11(6):6292-6301.
KIM D H, LEE H N. Patternless light outcoupling enhancement method for top-emission organic light-emitting diodes [J]. Jpn. J. Appl. Phys., 2016, 55(11):112102-1-5.
WEI P C, ZHANG D D, DUAN L. Modulation of Förster and Dexter interactions in single-emissive-layer all-fluorescent WOLEDs for improved efficiency and extended lifetime [J]. Adv. Funct. Mater., 2019, 30(6):1907083-1-10.
ZANG C X, LIU S H, XU M X, et al. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling [J]. Light Sci. Appl., 2021, 10:116-1-10.
WU T L, HUANG M J, LIN C C, et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off [J]. Nat. Photonics, 2018, 12(4):235-240.
0
Views
176
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution