浏览全部资源
扫码关注微信
1.南开大学 物理科学学院, 天津 300071
2.南开大学 电子信息与光学工程学院, 天津 300071
Published:05 September 2022,
Received:05 January 2022,
Revised:23 January 2022,
移动端阅览
张盼,白宇星,武莉等.晶格中的缺陷与材料发光性质关系研究进展[J].发光学报,2022,43(09):1361-1379.
ZHANG Pan,BAI Yu-xing,WU Li,et al.Advances in Relationship Between Lattice Defects and Luminescent Characteristics[J].Chinese Journal of Luminescence,2022,43(09):1361-1379.
张盼,白宇星,武莉等.晶格中的缺陷与材料发光性质关系研究进展[J].发光学报,2022,43(09):1361-1379. DOI: 10.37188/CJL.20220005.
ZHANG Pan,BAI Yu-xing,WU Li,et al.Advances in Relationship Between Lattice Defects and Luminescent Characteristics[J].Chinese Journal of Luminescence,2022,43(09):1361-1379. DOI: 10.37188/CJL.20220005.
发光材料的优化与改善一直是相关领域研究的热点。形成于晶体生长/制备过程中的晶格缺陷与载流子迁移存在密切关联,可通过人工调控缺陷的方式对载流子的迁移进行调控,进而改善其发光性能,这对发光材料的开发与应用具有重要意义。研究发现,通过在特定三维网状结构中掺杂过渡或稀土金属离子,因不等价阳离子取代而产生的相应点缺陷,不仅可以有效促进变价激活离子的价态降低,而且还会协同本征缺陷形成功能性陷阱能级,实现载流子的存储和在外界激励下响应的动态平衡,进而改善材料的发光性能甚至带来新的发光特性。本文较系统地梳理了点缺陷与样品发光性能之间的内在耦合机制和调控方式,以期对后续新型光电功能晶态材料的研发和探索提供有意义的启示。
The optimization and improvement of luminescent materials have long been a focus of related research fields. The carrier migration has close relationship with lattice defects which are formed during the crystal growth or preparation. Artificial defect control is an important method to regulate carrier migration and improve the luminescent properties, which is of great significance to the development and application of luminescent materials. In previous studies, by doping transition or rare earth metal ions in a specific rigid three-dimensional structure, the point defects caused by non-equivalent cationic substitution can not only effectively promote the self-reduction of activators, but also cooperate with the intrinsic defects to form functional trap levels. These energy levels can trap carriers and realize the dynamic balance of carrier storage and response to external excitation, which effectively improves the luminescence performance of the materials and even brings novel optical properties. This review systematically summarizes the internal coupling mechanism and control methods between point defects and luminescence properties, and provides valuable enlightenment for the subsequent development and exploration of novel optical-electronic functional materials.
晶格缺陷自还原热稳定性长余辉发光应力发光
lattice defectself-reductionthermal stabilitypersistent luminescencemechanoluminescence
DOSEV D, NICHKOVA M, KENNEDY I M. Inorganic lanthanide nanophosphors in biotechnology [J]. J. Nanosci. Nanotechnol., 2008, 8(3): 1052-1067. doi: 10.1166/jnn.2008.18155http://dx.doi.org/10.1166/jnn.2008.18155
JÜSTEL T, NIKOL H, RONDA C. New developments in the field of luminescent materials for lighting and displays [J]. Angew. Chem. Int. Ed., 1998, 37(22): 3084-3103. doi: 10.1002/(sici)1521-3773(19981204)37:22<3084::aid-anie3084>3.0.co;2-whttp://dx.doi.org/10.1002/(sici)1521-3773(19981204)37:22<3084::aid-anie3084>3.0.co;2-w
WEI Z T, CHEN W B, WANG Z Q, et al. High-temperature persistent luminescence and visual dual-emitting optical temperature sensing in self-activated CaNb2O6∶Tb3+ phosphor [J]. J. Am. Ceram. Soc., 2021, 104(4): 1750-1759. doi: 10.1111/jace.17579http://dx.doi.org/10.1111/jace.17579
许少鸿. 固体发光 [M]. 北京: 清华大学出版社, 2011.
XU S H. Solid State Luminescence [M]. Beijing: Tsinghua University Press, 2011. (in Chinese)
徐叙瑢, 苏勉曾. 发光学与发光材料 [M]. 北京: 化学工业出版社, 2004.
XU X R, SU M Z. Luminescence and Luminescent Materials [M]. Beijing: Chemical Industry Press, 2004. (in Chinese)
ZHANG C M, LIN J. Defect-related luminescent materials: synthesis, emission properties and applications [J]. Chem. Soc. Rev., 2012, 41(23): 7938-7961. doi: 10.1039/c2cs35215jhttp://dx.doi.org/10.1039/c2cs35215j
YI H, WU L, WU L W, et al. Crystal structure of high-temperature phase β-NaSrBO3 and photoluminescence of β-NaSrBO3∶Ce3+ [J]. Inorg. Chem., 2016, 55(13): 6487-6495. doi: 10.1021/acs.inorgchem.6b00552http://dx.doi.org/10.1021/acs.inorgchem.6b00552
LIU W R, HUANG C H, WU C P, et al. High efficiency and high color purity blue-emitting NaSrBO3∶Ce3+ phosphor for near-UV light-emitting diodes [J]. J. Mater. Chem., 2011, 21(19): 6869-6874. doi: 10.1039/c1jm10765hhttp://dx.doi.org/10.1039/c1jm10765h
ZHANG Y, XU J Y, CUI Q Z, et al. Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms [J]. Sci. Rep., 2017, 7: 42464-1-12. doi: 10.1038/srep42464http://dx.doi.org/10.1038/srep42464
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor [J]. Nat. Mater., 2017, 16(5): 543-550. doi: 10.1038/nmat4843http://dx.doi.org/10.1038/nmat4843
ZHANG M L, XIA Z G, LIU Q L. Thermally stable KxCs1-xAlSi2O6∶Eu2+ phosphors and their photoluminescence tuning [J]. J. Mater. Chem. C, 2017, 5(30): 7489-7494. doi: 10.1039/c7tc02539dhttp://dx.doi.org/10.1039/c7tc02539d
WANG S H, XU Y Q, CHEN T, et al. A red phosphor LaSc3(BO3)4∶Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs [J]. Chem. Eng. J., 2021, 404: 125912-1-13. doi: 10.1016/j.cej.2020.125912http://dx.doi.org/10.1016/j.cej.2020.125912
VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds: a review [J]. Materials, 2013, 6(7): 2789-2818. doi: 10.3390/ma6072789http://dx.doi.org/10.3390/ma6072789
VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds: a review [J]. Materials, 2010, 3(4): 2536-2566. doi: 10.3390/ma3042536http://dx.doi.org/10.3390/ma3042536
WANG S X, LIU X L, QU B Y, et al. Green persistent luminescence and the electronic structure of β-Sialon∶Eu2+ [J]. J. Mater. Chem. C, 2019, 7(40): 12544-12551. doi: 10.1039/c9tc03833ghttp://dx.doi.org/10.1039/c9tc03833g
WANG Z Z, SONG Z, NING L X, et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5∶Eu2+ for warm-color mark applications [J]. J. Mater. Chem. C, 2020, 8(3): 1143-1150. doi: 10.1039/c9tc05880jhttp://dx.doi.org/10.1039/c9tc05880j
WANG F X, GUO J Z, WANG S X, et al. Yellow persistent luminescence and electronic structure of Ca-α-Sialon∶Eu2+ [J]. J. Alloys Compd., 2020, 821: 153482-1-10. doi: 10.1016/j.jallcom.2019.153482http://dx.doi.org/10.1016/j.jallcom.2019.153482
WANG Z Z, SONG Z, LIU Q L. Orange super-long persistent luminescent materials: (Sr1-xBax)3SiO5∶Eu2+,Nb5+ [J]. Mater. Chem. Front., 2021, 5(1): 333-340. doi: 10.1039/d0qm00488jhttp://dx.doi.org/10.1039/d0qm00488j
LIU X L, SONG Z, WANG S X, et al. The red persistent luminescence of (Sr,Ca)AlSiN3∶Eu2+ and mechanism different to SrAl2O4∶Eu2+,Dy3+ [J]. J. Lumin., 2019, 208: 313-321. doi: 10.1016/j.jlumin.2018.12.069http://dx.doi.org/10.1016/j.jlumin.2018.12.069
LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors-from fundamentals to applications [J]. Chem. Soc. Rev., 2016, 45(8): 2090-2136. doi: 10.1039/c5cs00582ehttp://dx.doi.org/10.1039/c5cs00582e
CHÁVEZ D, GARCIA C R, OLIVA J, et al. A review of phosphorescent and fluorescent phosphors for fingerprint detection [J]. Ceram. Int., 2021, 47(1): 10-41. doi: 10.1016/j.ceramint.2020.08.259http://dx.doi.org/10.1016/j.ceramint.2020.08.259
LIN X H, ZHANG R L, TIAN X M, et al. Coordination geometry-dependent multi-band emission and atypically deep-trap-dominated NIR persistent luminescence from chromium-doped aluminates [J]. Adv. Opt. Mater., 2018, 6(7): 1701161. doi: 10.1002/adom.201701161http://dx.doi.org/10.1002/adom.201701161
YANG J, JIANG R Y, MENG Y Q, et al. NIR-Ⅰ/Ⅲ afterglow induced by energy transfers between Er and Cr codoped in ZGGO nanoparticles for potential bioimaging [J]. J. Am. Ceram. Soc., 2021, 104(9): 4637-4648. doi: 10.1111/jace.17880http://dx.doi.org/10.1111/jace.17880
QIN X Y, WANG J, YUAN Q. Synthesis and biomedical applications of lanthanides-doped persistent luminescence phosphors with NIR emissions [J]. Front. Chem., 2020, 8: 608578. doi: 10.3389/fchem.2020.608578http://dx.doi.org/10.3389/fchem.2020.608578
张亮亮, 张家骅, 郝振东, 等. Cr3+掺杂的宽带近红外荧光粉及其研究进展 [J]. 发光学报, 2019, 40(12): 1449-1459. doi: 10.3788/fgxb20194012.1449http://dx.doi.org/10.3788/fgxb20194012.1449
ZHANG L L, ZHANG J H, HAO Z D, et al. Recent progress on Cr3+ doped broad band NIR phosphors [J]. Chin. J. Lumin., 2019, 40(12): 1449-1459. (in Chinese). doi: 10.3788/fgxb20194012.1449http://dx.doi.org/10.3788/fgxb20194012.1449
WANG X L, CHEN Y F, LIU F, et al. Solar-blind ultraviolet-C persistent luminescence phosphors [J]. Nat. Commun., 2020, 11(1): 2040-1-8. doi: 10.1038/s41467-020-16015-zhttp://dx.doi.org/10.1038/s41467-020-16015-z
CAI H, SONG Z, LIU Q L. Infrared-photostimulable and long-persistent ultraviolet-emitting phosphor LiLuGeO4∶Bi3+,Yb3+ for biophotonic applications [J]. Mater. Chem. Front., 2021, 5(3): 1468-1476. doi: 10.1039/d0qm00932fhttp://dx.doi.org/10.1039/d0qm00932f
LIU F, LIANG Y J, PAN Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8∶Cr3+, Yb3+, Er3+ phosphor [J]. Phys. Rev. Lett., 2014, 113(17): 177401-1-5.
FENG A, SMET P F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications [J]. Materials, 2018, 11(4): 484-1-56. doi: 10.3390/ma11040484http://dx.doi.org/10.3390/ma11040484
ZHOU J Y, GU Y, LU J Y, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer [J]. Chem. Eng. J., 2020, 390: 124473-1-7. doi: 10.1016/j.cej.2020.124473http://dx.doi.org/10.1016/j.cej.2020.124473
唐艺倩, 雷键雄, 张晓明, 等. 无机可再生应力发光材料研究进展 [J]. 发光学报, 2021, 42(4): 404-418. doi: 10.37188/CJL.20200398http://dx.doi.org/10.37188/CJL.20200398
TANG Y Q, LEI J X, ZHANG X M, et al. Advances in recoverable mechanoluminescence in inorganic materials [J]. Chin. J. Lumin., 2021, 42(4): 404-418. (in Chinese). doi: 10.37188/CJL.20200398http://dx.doi.org/10.37188/CJL.20200398
ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J]. Prog. Mater. Sci., 2019, 103: 678-742. doi: 10.1016/j.pmatsci.2019.02.001http://dx.doi.org/10.1016/j.pmatsci.2019.02.001
ZHUANG Y X, XIE R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review [J]. Adv. Mater., 2021, 33(50): 2005925-1-33. doi: 10.1002/adma.202005925http://dx.doi.org/10.1002/adma.202005925
PENG D F, JIANG Y, HUANG B L, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset [J]. Adv. Mater., 2020, 32(16): 1907747-1-7. doi: 10.1002/adma.201907747http://dx.doi.org/10.1002/adma.201907747
ZHUANG Y X, TU D, CHEN C J, et al. Force-induced charge carrier storage: a new route for stress recording [J]. Light: Sci. Appl., 2020, 9: 182-1-9. doi: 10.1038/s41377-020-00422-4http://dx.doi.org/10.1038/s41377-020-00422-4
WANG X D, ZHANG H L, YU R M, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Adv. Mater., 2015, 27(14): 2324-2331. doi: 10.1002/adma.201405826http://dx.doi.org/10.1002/adma.201405826
JEONG S M, SONG S, JOO K I, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer [J]. Energy Environ. Sci., 2014, 7(10): 3338-3346. doi: 10.1039/c4ee01776ehttp://dx.doi.org/10.1039/c4ee01776e
毛少辉, 陈冰, 郑元钿, 等. 基于应力发光材料的肢体运动压力可视化测量 [J]. 发光学报, 2021, 42(4): 397-403. doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
MAO S H, CHEN B, ZHENG Y T, et al. Dynamic limb-pressure visualization and measurement based on mechanoluminescent materials [J]. Chin. J. Lumin., 2021, 42(4): 397-403. (in Chinese). doi: 10.37188/CJL.20210031http://dx.doi.org/10.37188/CJL.20210031
CHANDRA V K, CHANDRA B P. Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals [J]. J. Lumin., 2012, 132(3): 858-869. doi: 10.1016/j.jlumin.2011.09.054http://dx.doi.org/10.1016/j.jlumin.2011.09.054
杨秀霞, 涂东. 近红外应力发光材料研究进展 [J]. 发光学报, 2021, 42(2): 136-152. doi: 10.37188/CJL.20200364http://dx.doi.org/10.37188/CJL.20200364
YANG X X, TU D. Recent advances of near-infrared mechanoluminescent materials [J]. Chin. J. Lumin., 2021, 42(2): 136-152. (in Chinese). doi: 10.37188/CJL.20200364http://dx.doi.org/10.37188/CJL.20200364
XU G Q, GUAN D, FU J J, et al. Density of surface states: another key contributing factor in triboelectric charge generation [J]. ACS Appl. Mater. Interfaces, 2022, 14(4): 5355-5362. doi: 10.1021/acsami.1c21359http://dx.doi.org/10.1021/acsami.1c21359
WU L, SUN S J, BAI Y X, et al. Defect-induced self-reduction and anti-thermal quenching in NaZn(PO3)3∶Mn2+ red phosphor [J]. Adv. Opt. Mater., 2021, 9(19): 2100870-1-7. doi: 10.1002/adom.202100870http://dx.doi.org/10.1002/adom.202100870
CHEN H M, WU L W, BO F, et al. Coexistence of self-reduction from Mn4+ to Mn2+ and elastico-mechanoluminescence in diphase KZn(PO3)3∶Mn2+ [J]. J. Mater. Chem. C, 2019, 7(23): 7096-7103. doi: 10.1039/c9tc01062ahttp://dx.doi.org/10.1039/c9tc01062a
CHEN H M, BAI Y X, ZHENG L R, et al. Interstitial oxygen defect induced mechanoluminescence in KCa(PO3)3∶Mn2+ [J]. J. Mater. Chem. C, 2020, 8(19): 6587-6594. doi: 10.1039/d0tc00323ahttp://dx.doi.org/10.1039/d0tc00323a
ZHENG Z Z, BAI Y X, REN Y J, et al. Intrinsic and extrinsic defects build a novel mechanoluminescent phosphor Na2MgGeO4∶Mn2+ [J]. J. Mater. Chem. C, 2021, 9(10): 3513-3521. doi: 10.1039/d0tc05582dhttp://dx.doi.org/10.1039/d0tc05582d
BAI Y X, ZHENG Z Z, WU L, et al. Construction of a novel mechanoluminescent phosphor Li2MgGeO4∶xMn2+ by defect control [J]. Dalton Trans., 2021, 50(25): 8803-8810. doi: 10.1039/d1dt01125ahttp://dx.doi.org/10.1039/d1dt01125a
ZHANG P, ZHENG Z Z, WU L, et al. Self-reduction-related defects, long afterglow, and mechanoluminescence in centrosymmetric Li2ZnGeO4∶Mn2+ [J]. Inorg. Chem., 2021, 60(23): 18432-18441. doi: 10.1021/acs.inorgchem.1c03022http://dx.doi.org/10.1021/acs.inorgchem.1c03022
孙家跃, 杜海燕, 胡文祥. 固体发光材料 [M]. 北京: 化学工业出版社, 2003.
SUN J Y, DU H Y, HU W X. Solid Luminescent Materials [M]. Beijing: Chemical Industry Press, 2003. (in Chinese)
胡赓祥, 蔡珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010.
HU G X, CAI X, RONG Y H. Fundamentals of Material Science [M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010. (in Chinese)
崔俊杰, 杨立森, 张宝光, 等. 具有线缺陷二维光折变光子晶格的制备研究 [J]. 光学学报, 2009, 29(12): 3452-3457. doi: 10.3788/aos20092912.3452http://dx.doi.org/10.3788/aos20092912.3452
CUI J J, YANG L S, ZHANG B G, et al. The research of fabricating two-dimensional photorefractive photonic lattice within linear-defect [J]. Acta Opt. Sinica, 2009, 29(12): 3452-3457. (in Chinese). doi: 10.3788/aos20092912.3452http://dx.doi.org/10.3788/aos20092912.3452
万勇, 夏临华, 赵修松, 等. 面缺陷对三维胶体晶体光学性质的影响 [J]. 光学学报, 2009, 29(7): 1991-1995. doi: 10.3788/aos20092907.1991http://dx.doi.org/10.3788/aos20092907.1991
WAN Y, XIA L H, ZHAO X S, et al. Effect of planar defects on optical properties in three-dimensional colloid crystals [J]. Acta Opt. Sinica, 2009, 29(7): 1991-1995. (in Chinese). doi: 10.3788/aos20092907.1991http://dx.doi.org/10.3788/aos20092907.1991
孔勇, 李代林, 裴红艳, 等. 光的偏振态与晶体的抗光损伤阈值关系的研究 [J]. 曲阜师范大学学报, 2000, 26(4): 55-57. doi: 10.3969/j.issn.1001-5337.2000.04.018http://dx.doi.org/10.3969/j.issn.1001-5337.2000.04.018
KONG Y, LI D L, PEI H Y, et al. The study on releation of the optic polarization state and the optic damage threshold value of crystal [J]. J. Qufu Norm. Univ., 2000, 26(4): 55-57. (in Chinese). doi: 10.3969/j.issn.1001-5337.2000.04.018http://dx.doi.org/10.3969/j.issn.1001-5337.2000.04.018
王雪莹, 田慧平, 李长红, 等. 聚合物光子晶体波导中慢光传输的电光动态调制 [J]. 光学学报, 2009, 29(5): 1374-1378. doi: 10.3788/aos20092905.1374http://dx.doi.org/10.3788/aos20092905.1374
WANG X Y, TIAN H P, LI C H, et al. Tunable slow light by electro-eptic effect in polymer photonic crystal waveguide [J]. Acta Opt. Sinica, 2009, 29(5): 1374-1378. (in Chinese). doi: 10.3788/aos20092905.1374http://dx.doi.org/10.3788/aos20092905.1374
陈兵, 唐天同. 光子晶体线缺陷波导中的折射率相位移调制增强效应 [J]. 光子学报, 2011, 40(12):1845-1849. doi: 10.3788/gzxb20114012.1845http://dx.doi.org/10.3788/gzxb20114012.1845
CHEN B, TANG T T. Enhancement effect of refractive index phase shift modulation near guided-wave band edge of line-defect photonic crystal waveguide [J]. Acta Photon. Sinica, 2011, 40(12): 1845-1849. (in English). doi: 10.3788/gzxb20114012.1845http://dx.doi.org/10.3788/gzxb20114012.1845
HARRY L T, SEAN R B. Tailoring material properties through defect engineering [J]. Chem. Lett., 2010, 39(12): 1226-1231. doi: 10.1246/cl.2010.1226http://dx.doi.org/10.1246/cl.2010.1226
PATHAK N, MUKHERJEE S, DAS D, et al. Evolution of different defect clusters in Eu3+ doped KMgF3 and Eu3+, Li+ co-doped KMgF3 compounds and the immediate impact on the phosphor characteristics [J]. J. Mater. Chem. C, 2020, 8(21): 7149-7161. doi: 10.1039/d0tc00146ehttp://dx.doi.org/10.1039/d0tc00146e
ZHU T J, HU L P, ZHAO X B, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials [J]. Adv. Sci., 2016, 3(7): 1600004-1-16. doi: 10.1002/advs.201600004http://dx.doi.org/10.1002/advs.201600004
DU F P, HUANG Y L, KIM S I, et al. The self-activated luminescence properties of blue-emitting Sr9Ga(PO4)7 [J]. Chem. Lett., 2012, 41(1): 15-17. doi: 10.1246/cl.2012.15http://dx.doi.org/10.1246/cl.2012.15
GUPTA S K, GHOSH P S, YADAV A K, et al. Origin of blue-green emission in α-Zn2P2O7 and local structure of Ln3+ ion in α-Zn2P2O7∶Ln3+(Ln=Sm, Eu): time-resolved photoluminescence, EXAFS, and DFT measurements [J]. Inorg. Chem., 2017, 56(1): 167-178. doi: 10.1021/acs.inorgchem.6b01788http://dx.doi.org/10.1021/acs.inorgchem.6b01788
LIN C K, LUO Y, YOU H, et al. Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish-white luminescent material [J]. Chem. Mater., 2006, 18(2): 458-464. doi: 10.1021/cm052109hhttp://dx.doi.org/10.1021/cm052109h
HUANG Y L, FAN W B, HOU Y H, et al. Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe2O4: a first-principles study [J]. J. Magn. Magn. Mater., 2017, 429: 263-269. doi: 10.1016/j.jmmm.2017.01.043http://dx.doi.org/10.1016/j.jmmm.2017.01.043
TULLER H L, BISHOP S R. Point defects in oxides: tailoring materials through defect engineering [J]. Annu. Rev. Mater. Res., 2011, 41: 369-398. doi: 10.1146/annurev-matsci-062910-100442http://dx.doi.org/10.1146/annurev-matsci-062910-100442
ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging [J]. Acta Mater., 2018, 152: 148-154. doi: 10.1016/j.actamat.2018.04.011http://dx.doi.org/10.1016/j.actamat.2018.04.011
FENG H F, XU Z F, REN L, et al. Activating titania for efficient electrocatalysis by vacancy engineering [J]. ACS Catal., 2018, 8(5): 4288-4293. doi: 10.1021/acscatal.8b00719http://dx.doi.org/10.1021/acscatal.8b00719
PUST P, WOCHNIK A S, BAUMANN E, et al. Ca[LiAl3N4]∶Eu2+—a narrow-band red-emitting nitridolithoaluminate [J]. Chem. Mater., 2014, 26(11): 3544-3549. doi: 10.1021/cm501162nhttp://dx.doi.org/10.1021/cm501162n
LIN L N, MA Y L, WU J B, et al. Origin of photocatalytic activity in Ti4+/Ti3+ core-shell titanium oxide nanocrystals [J]. J. Phys. Chem. C, 2019, 123(34): 20949-20959. doi: 10.1021/acs.jpcc.9b05285http://dx.doi.org/10.1021/acs.jpcc.9b05285
XU X Q, REN J, CHEN G R, et al. Bright green emission from the Mn2+-doped zinc gallogermanate phosphors [J]. Opt. Mater. Express, 2013, 3(10): 1727-1732. doi: 10.1364/ome.3.001727http://dx.doi.org/10.1364/ome.3.001727
SINGH V, CHAKRADHAR R P S, RAO J L, et al. EPR and luminescence properties of combustion synthesized LiAl5O8∶Mn phosphors [J]. Mater. Chem. Phys., 2008, 110(1): 43-51. doi: 10.1016/j.matchemphys.2008.01.011http://dx.doi.org/10.1016/j.matchemphys.2008.01.011
SINGH V, CHAKRADHAR R P S, RAO J L, et al. EPR and luminescence properties of LiGa5O8∶Mn green emitting phosphor [J]. J. Lumin., 2009, 129(7): 755-759. doi: 10.1016/j.jlumin.2009.02.009http://dx.doi.org/10.1016/j.jlumin.2009.02.009
GUPTA S K, SUDARSHAN K, YADAV A K, et al. Deciphering the role of charge compensator in optical properties of SrWO4∶Eu3+∶A(A = Li+, Na+, K+): spectroscopic insight using photoluminescence, positron annihilation, and X-ray absorption [J]. Inorg. Chem., 2018, 57(2): 821-832. doi: 10.1021/acs.inorgchem.7b02780http://dx.doi.org/10.1021/acs.inorgchem.7b02780
GUPTA S K, REGHUKUMAR C, SUDARSHAN K, et al. Orange-red emitting Gd2Zr2O7∶Sm3+: structure-property correlation, optical properties and defect spectroscopy [J]. J. Phys. Chem. Solids, 2018, 116: 360-366. doi: 10.1016/j.jpcs.2018.01.031http://dx.doi.org/10.1016/j.jpcs.2018.01.031
BOS A J J. Thermoluminescence as a research tool to investigate luminescence mechanisms [J]. Materials, 2017, 10(12): 1357-1-22. doi: 10.3390/ma10121357http://dx.doi.org/10.3390/ma10121357
HUANG X X, QIAO Z, WEN J, et al. Intrinsic point defects and dopants Ce3+ in SrLiAl3N4: thermodynamic and spectral properties from first principles [J]. J. Phys. Chem. C, 2020, 124(24): 13400-13408. doi: 10.1021/acs.jpcc.0c04052http://dx.doi.org/10.1021/acs.jpcc.0c04052
闻军, 汪燕, 江贵生, 等. Sr2MgSi2O7中本征缺陷和镧系离子的热力学稳定性和转变能级 [J]. 发光学报, 2020, 41(6):655-663.
WEN J, WANG Y, JIANG G S, et al. Thermodynamic stabilities and transition levels of native defects and lanthanide ions in Sr2MgSi2O7 [J]. Chin. J. Lumin., 2020, 41(6): 655-663. (in English)
YANG W J, LUO L Y, CHEN T M, et al. Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED [J]. Chem. Mater., 2005, 17(15): 3883-3888. doi: 10.1021/cm050638fhttp://dx.doi.org/10.1021/cm050638f
BELHAROUAK I, ABOUIMRANE A, AMINE K. Structural and electrochemical characterization of Li2MnSiO4 cathode material [J]. J. Phys. Chem. C, 2009, 113(48): 20733-20737. doi: 10.1021/jp905611shttp://dx.doi.org/10.1021/jp905611s
PEI Z W, SU Q, ZHANG J Y. The valence change from RE3+ to Re2+ (RE = Eu, Sm, Yb) in SrB4O7∶RE prepared in air and the spectral properties of RE2+ [J]. J. Alloys Compd., 1993, 198(1-2): 51-53. doi: 10.1016/0925-8388(93)90143-bhttp://dx.doi.org/10.1016/0925-8388(93)90143-b
PEI Z, ZENG Q, SU Q. A study on the mechanism of the abnormal reduction of Eu3+→Eu2+ in Sr2B5O9Cl prepared in air at high temperature [J]. J. Solid State Chem., 1999, 145(1): 212-215. doi: 10.1006/jssc.1999.8246http://dx.doi.org/10.1006/jssc.1999.8246
SONG Z, LIAO J, DING X L, et al. Stability of divalent/trivalent oxidation state of europium in some Sr-based inorganic compounds [J]. J. Lumin., 2012, 132(7): 1768-1773. doi: 10.1016/j.jlumin.2012.02.013http://dx.doi.org/10.1016/j.jlumin.2012.02.013
DORENBOS P. Valence stability of lanthanide ions in inorganic compounds [J]. Chem. Mater., 2005, 17(25): 6452-6456. doi: 10.1021/cm051456ohttp://dx.doi.org/10.1021/cm051456o
XU H W, WANG L L, MA X M, et al. A novel Mn(Ⅱ)-based green phosphor and its self-reduction mechanism [J]. J. Lumin., 2018, 194: 303-310. doi: 10.1016/j.jlumin.2017.10.045http://dx.doi.org/10.1016/j.jlumin.2017.10.045
LEI X F, LI G, ZENG M, et al. Europium-doped NaBaB9O15 phosphors with controllable blue/red dual-band emissions through self-reduction for plant growth LEDs [J]. J. Lumin., 2021, 237: 118166. doi: 10.1016/j.jlumin.2021.118166http://dx.doi.org/10.1016/j.jlumin.2021.118166
WU Y H, YANG Y Y, LIU B F, et al. Self-reduction mechanism and luminescence properties of Eu2+-Eu3+ doped strontium pyrophosphate [J]. Mater. Today Commun., 2021, 26: 102008. doi: 10.1016/j.mtcomm.2020.102008http://dx.doi.org/10.1016/j.mtcomm.2020.102008
WU L W, BAI Y X, WU L, et al. Sm3+ and Eu3+ codoped SrBi2B2O7: a red-emitting phosphor with improved thermal stability [J]. RSC Adv., 2017, 7(2): 1146-1153. doi: 10.1039/c6ra26752ahttp://dx.doi.org/10.1039/c6ra26752a
ZOU H, YANG X Q, CHEN B, et al. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12 [J]. Angew. Chem. Int. Ed., 2019, 58(48): 17255-17259. doi: 10.1002/anie.201910277http://dx.doi.org/10.1002/anie.201910277
WANG W, FU M Q, LIU S W, et al. Anti-thermal-quenching red-emitting phosphors based on lanthanide doped negative-thermal-expansion (NTE) hosts [J]. J. Lumin., 2022, 242: 118536. doi: 10.1016/j.jlumin.2021.118536http://dx.doi.org/10.1016/j.jlumin.2021.118536
ZHONG J Y, ZHUO Y, DU F, et al. Efficient broadband near-infrared emission in the GaTaO4∶Cr3+ phosphor [J]. Adv. Opt. Mater., 2022, 10(2): 2101800-1-7. doi: 10.1002/adom.202101800http://dx.doi.org/10.1002/adom.202101800
LIU Y J, LI G H, WANG R R, et al. Dependence of luminous performance on Eu3+ site occupation in SrIn2(P2O7)2: the effect of the local environment [J]. Inorg. Chem., 2021, 60(22): 17219-17229. doi: 10.1021/acs.inorgchem.1c02550http://dx.doi.org/10.1021/acs.inorgchem.1c02550
LIAO M, WANG Q, LIN Q M, et al. Na replaces Rb towards high-performance narrow-band green phosphors for backlight display applications [J]. Adv. Opt. Mater., 2021, 9(17): 2100465-1-10. doi: 10.1002/adom.202100465http://dx.doi.org/10.1002/adom.202100465
SHAO Q Y, LIN H Y, DONG Y, et al. Thermostability and photostability of Sr3SiO5∶Eu2+ phosphors for white LED applications [J]. J. Solid State Chem., 2015, 225: 72-77. doi: 10.1016/j.jssc.2014.12.005http://dx.doi.org/10.1016/j.jssc.2014.12.005
WEI Y, YANG H, GAO Z Y, et al. Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7∶Bi phosphor based on zinc vacancy [J]. Laser Photon. Rev., 2021, 15(1): 2000048-1-10. doi: 10.1002/lpor.202000048http://dx.doi.org/10.1002/lpor.202000048
LIU Z C, ZHAO L, CHEN W B, et al. Effects of the deep traps on the thermal-stability property of CaAl2O4∶Eu2+ phosphor [J]. J. Am. Ceram. Soc., 2018, 101(8): 3480-3488. doi: 10.1111/jace.15532http://dx.doi.org/10.1111/jace.15532
FAN X T, CHEN W B, XIN S Y, et al. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps [J]. J. Mater. Chem. C, 2018, 6(12): 2978-2982. doi: 10.1039/c8tc00511ghttp://dx.doi.org/10.1039/c8tc00511g
LIU S M, WANG Z J, BAO Q, et al. Abnormal thermal quenching and blue-shift of Zn3(BO3)(PO4): inducing host defect by doping Mn2+ and Tb3+ [J]. Dyes Pigm., 2019, 165: 44-52. doi: 10.1016/j.dyepig.2019.01.048http://dx.doi.org/10.1016/j.dyepig.2019.01.048
WEI R F, YANG L P, ZHANG X, et al. Energy transfer and highly thermal stability in single-phase SrY2O4∶Bi3+, Sm3+ phosphors for UV-LEDs [J]. J. Lumin., 2020, 228: 117606. doi: 10.1016/j.jlumin.2020.117606http://dx.doi.org/10.1016/j.jlumin.2020.117606
QIAO J W, NING L X, MOLOKEEV M S, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence [J]. J. Am. Chem. Soc., 2018, 140(30): 9730-9736. doi: 10.1021/jacs.8b06021http://dx.doi.org/10.1021/jacs.8b06021
YAN C P, LIU Z N, ZHUANG W D, et al. YScSi4N6C∶Ce3+-a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes [J]. Inorg. Chem., 2017, 56(18): 11087-11095. doi: 10.1021/acs.inorgchem.7b01408http://dx.doi.org/10.1021/acs.inorgchem.7b01408
WU Y C, WANG D Y, CHEN T M, et al. A novel tunable green-to yellow-emitting β-YFS∶Ce3+ phosphor for solid-state lighting [J]. ACS Appl. Mater. Interfaces, 2011, 3(8): 3195-3199. doi: 10.1021/am2006965http://dx.doi.org/10.1021/am2006965
YEH C W, CHEN W T, LIU R S, et al. Origin of thermal degradation of Sr2-xSi5N8∶Eux phosphors in air for light-emitting diodes [J]. J. Am. Chem. Soc., 2012, 134(34): 14108-14117. doi: 10.1021/ja304754bhttp://dx.doi.org/10.1021/ja304754b
SHI R, NING L X, WANG Z Q, et al. Zero-thermal quenching of Mn2+ red luminescence via efficient energy transfer from Eu2+ in BaMgP2O7 [J]. Adv. Opt. Mater., 2019, 7(23): 1901187-1-7. doi: 10.1002/adom.201901187http://dx.doi.org/10.1002/adom.201901187
WANG C Y, KATE O MTEN, TAKEDA T, et al. Efficient and thermally stable blue-emitting Ce3+ doped LaAl(Si6-zAlz)⁃(N10-zOz)(JEM∶Ce) phosphors for white LEDs [J]. J. Mater. Chem. C, 2017, 5(32): 8295-8300.
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective [J]. J. Lumin., 2019, 205: 581-620. doi: 10.1016/j.jlumin.2018.09.047http://dx.doi.org/10.1016/j.jlumin.2018.09.047
AITASALO T, DEREŃ P, HÖLSÄ J, et al. Persistent luminescence phenomena in materials doped with rare earth ions [J]. J. Solid State Chem., 2003, 171(1-2): 114-122. doi: 10.1016/s0022-4596(02)00194-9http://dx.doi.org/10.1016/s0022-4596(02)00194-9
PELLÉ F, AITASALO T, LASTUSAARI M, et al. Optically stimulated luminescence of persistent luminescence materials [J]. J. Lumin., 2006, 119-120: 64-68. doi: 10.1016/j.jlumin.2005.12.064http://dx.doi.org/10.1016/j.jlumin.2005.12.064
VAN DER HEGGEN D, ZILENAITE R, EZERSKYTE E, et al. A standalone, battery-free light dosimeter for ultraviolet to infrared light [J]. Adv. Funct. Mater., 2022, 32(14): 2109635-1-9. doi: 10.1002/adfm.202109635http://dx.doi.org/10.1002/adfm.202109635
DORENBOS P, BOS A J J, POOLTON N R J. Electron transfer processes in double lanthanide activated YPO4 [J]. Opt. Mater., 2011, 33(7): 1019-1023. doi: 10.1016/j.optmat.2010.08.016http://dx.doi.org/10.1016/j.optmat.2010.08.016
AITASALO T, DURYGIN A, HÖLSÄ J, et al. Low temperature thermoluminescence properties of Eu2+ and R3+ doped CaAl2O4 [J]. J. Alloys Compd., 2004, 380(1-2): 4-8. doi: 10.1016/j.jallcom.2004.03.007http://dx.doi.org/10.1016/j.jallcom.2004.03.007
MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4∶Eu2+, Dy3+ [J]. J. Electrochem. Soc., 1996, 143(8): 2670-2673. doi: 10.1149/1.1837067http://dx.doi.org/10.1149/1.1837067
AITASALO T, HÖLSÄ J, KIRM M, et al. Persistent luminescence and synchrotron radiation study of the Ca2MgSi2O7∶Eu2+, R3+ materials [J]. Radiat. Meas., 2007, 42(4-5): 644-647. doi: 10.1016/j.radmeas.2007.01.058http://dx.doi.org/10.1016/j.radmeas.2007.01.058
AITASALLO T, HÖLSÄ J, JUNGNER H, et al. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4∶Eu2+, R3+ [J]. J. Phys. Chem. B, 2006, 110(10): 4589-4598. doi: 10.1021/jp057185mhttp://dx.doi.org/10.1021/jp057185m
YUAN Z X, CHANG C K, MAO D L, et al. Effect of composition on the luminescent properties of Sr4Al14O25∶Eu2+, Dy3+ phosphors [J]. J. Alloys Compd., 2004, 377(1-2): 268-271. doi: 10.1016/j.jallcom.2004.01.063http://dx.doi.org/10.1016/j.jallcom.2004.01.063
LIU B, SHI C S, YIN M, et al. The trap states in the Sr2MgSi2O7 and (Sr, Ca)MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+ [J]. J. Alloys Compd., 2005, 387(1-2): 65-69. doi: 10.1016/j.jallcom.2004.06.061http://dx.doi.org/10.1016/j.jallcom.2004.06.061
AITASALO T, HÖLSÄ J, JUNGNER H, et al. Effect of temperature on the luminescence processes of SrAl2O4∶Eu2+ [J]. Radiat. Meas., 2004, 38(4-6): 727-730. doi: 10.1016/j.radmeas.2004.01.031http://dx.doi.org/10.1016/j.radmeas.2004.01.031
SURIYAMURTHY N, PANIGRAHI B S. Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25∶Eu2+, Dy3+ phosphor [J]. J. Lumin., 2008, 128(11): 1809-1814. doi: 10.1016/j.jlumin.2008.05.001http://dx.doi.org/10.1016/j.jlumin.2008.05.001
BONTURIM E, MERÍZIO L G, DOS REIS R, et al. Persistent luminescence of inorganic nanophosphors prepared by wet-chemical synthesis [J]. J. Alloys Compd., 2018, 732: 705-715. doi: 10.1016/j.jallcom.2017.10.219http://dx.doi.org/10.1016/j.jallcom.2017.10.219
GUO H J, WANG Y H, LI G, et al. Insights into excellent persistent luminescence and detecting trap distribution in BaHfSi3O9∶Eu2+, Pr3+ [J]. J. Mater. Chem. C, 2017, 5(46): 12090-12096. doi: 10.1039/c7tc03579ahttp://dx.doi.org/10.1039/c7tc03579a
GUO H J, WANG Y H, LI G, et al. Cyan emissive super-persistent luminescence and thermoluminescence in BaZrSi3O9∶Eu2+, Pr3+ phosphors [J]. J. Mater. Chem. C, 2017, 5(11): 2844-2851. doi: 10.1039/c7tc00133ahttp://dx.doi.org/10.1039/c7tc00133a
ZHUANG Y X, WANG L, LV Y, et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials [J]. Adv. Funct. Mater., 2018, 28(8): 1705769-1-9. doi: 10.1002/adfm.201705769http://dx.doi.org/10.1002/adfm.201705769
WANG C L, JIN Y H, LV Y, et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4∶Eu2+, Ho3+ and photostimulable luminescence for optical information storag [J]. J. Mater. Chem. C, 2018, 6(22): 6058-6067. doi: 10.1039/c8tc01722khttp://dx.doi.org/10.1039/c8tc01722k
LIU Z C, ZHAO L, YANG X X, et al. Long persistent luminescence properties of NaBaScSi2O7∶Tb3+ and it's applications above room temperature [J]. Chem. Eng. J., 2020, 401: 126119-1-7. doi: 10.1016/j.cej.2020.126119http://dx.doi.org/10.1016/j.cej.2020.126119
ZHOU Z H, LI Y Y, PENG M Y. Near-infrared persistent phosphors: synthesis, design, and applications [J]. Chem. Eng. J., 2020, 399: 125688. doi: 10.1016/j.cej.2020.125688http://dx.doi.org/10.1016/j.cej.2020.125688
WU Y L, LI Y, QIN X X, et al. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14∶Cr3+, Nd3+ phosphor [J]. J. Alloys Compd., 2015, 649: 62-66. doi: 10.1016/j.jallcom.2015.05.037http://dx.doi.org/10.1016/j.jallcom.2015.05.037
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates [J]. Nat. Mater., 2012, 11(1): 58-63. doi: 10.1038/nmat3173http://dx.doi.org/10.1038/nmat3173
LI Y, ZHOU S F, LI Y Y, et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging [J]. J. Mater. Chem. C, 2014, 2(15): 2657-2663. doi: 10.1039/c4tc00014ehttp://dx.doi.org/10.1039/c4tc00014e
ZHUANG Y X, UEDA J, TANABE S, et al. Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x∶Cr3+ persistent phosphors [J]. J. Mater. Chem. C, 2014, 2(28): 5502-5509. doi: 10.1039/c4tc00369ahttp://dx.doi.org/10.1039/c4tc00369a
ALLIX M, CHENU S, VÉRON E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4 [J]. Chem. Mater., 2013, 25(9): 1600-1606. doi: 10.1021/cm304101nhttp://dx.doi.org/10.1021/cm304101n
LIU S Q, MAO N, SONG Z, et al. UV-red light-chargeable near-infrared-persistent phosphors and their applications [J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 1496-1504. doi: 10.1021/acsami.1c21321http://dx.doi.org/10.1021/acsami.1c21321
DAI D C, MINIC D, STOJKOVIC D. How to form a wormhole [J]. Eur. Phys. J. C, 2020, 80(12): 1103-1-6. doi: 10.1140/epjc/s10052-020-08698-xhttp://dx.doi.org/10.1140/epjc/s10052-020-08698-x
CHEN X Z, LI Y, HUANG K, et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence [J]. Adv. Mater., 2021, 33(15): 2008722-1-7. doi: 10.1002/adma.202008722http://dx.doi.org/10.1002/adma.202008722
AKIYAMA M, XU C N, MATSUI H, et al. Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7∶Ce by irradiation with ultraviolet light [J]. Appl. Phys. Lett., 1999, 75(17): 2548-2550. doi: 10.1063/1.125073http://dx.doi.org/10.1063/1.125073
YAMADA H, KUSABA H, XU C N. Anisotropic lattice behavior in elasticoluminescent material SrAl2O4∶Eu2+ [J]. Appl. Phys. Lett., 2008, 92(10): 101909-1-3. doi: 10.1063/1.2896296http://dx.doi.org/10.1063/1.2896296
KOBAKHIDZE L, GUIDRY C J, HOLLERMAN W A, et al. Detecting mechanoluminescence from ZnS∶Mn powder using a high speed camera [J]. IEEE Sens. J., 2013, 13(8): 3053-3059. doi: 10.1109/jsen.2013.2261489http://dx.doi.org/10.1109/jsen.2013.2261489
TU D, XU C N, YOSHIDA A, et al. LiNbO3∶Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence [J]. Adv. Mater., 2017, 29(22): 1606914-1-4. doi: 10.1002/adma.201606914http://dx.doi.org/10.1002/adma.201606914
PAN C, ZHANG J C, ZHANG M, et al. Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M=Sr, Ca) isomorphic perovskites [J]. Opt. Mater. Express, 2018, 8(6): 1425-1434. doi: 10.1364/ome.8.001425http://dx.doi.org/10.1364/ome.8.001425
ZHANG J C, XU C N, KAMIMURA S, et al. An intense elastico-mechanoluminescence material CaZnOS∶Mn2+ for sensing and imaging multiple mechanical stresses [J]. Opt. Express, 2013, 21(11): 12976-12986. doi: 10.1364/oe.21.012976http://dx.doi.org/10.1364/oe.21.012976
ZHANG J C, ZHAO L Z, LONG Y Z, et al. Color manipulation of intense multiluminescence from CaZnOS∶Mn2+ by Mn2+ concentration effect [J]. Chem. Mater., 2015, 27(21): 7481-7489. doi: 10.1021/acs.chemmater.5b03570http://dx.doi.org/10.1021/acs.chemmater.5b03570
ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping [J]. Chem. Mater., 2016, 28(11): 4052-4057. doi: 10.1021/acs.chemmater.6b01550http://dx.doi.org/10.1021/acs.chemmater.6b01550
LI L J, WONG K L, LI P F, et al. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor [J]. J. Mater. Chem. C, 2016, 4(35): 8166-8170. doi: 10.1039/c6tc02760ahttp://dx.doi.org/10.1039/c6tc02760a
MARSUI H, XU C N, AKIYAMA M, et al. Strong mechanoluminescence from UV-irradiated spinels of ZnGa2O4∶Mn and MgGa2O4∶Mn [J]. Jpn. J. Appl. Phys., 2000, 39(12R): 6582-6586. doi: 10.1143/jjap.39.6582http://dx.doi.org/10.1143/jjap.39.6582
KAMIMURA S, YAMADA H, XU C N. Strong reddish-orange light emission from stress-activated Srn+1SnnO3(n+1)∶Sm3+(n=1, 2, ∞) with perovskite-related structures [J]. Appl. Phys. Lett., 2012, 101(9): 091113-1-4. doi: 10.1063/1.4749807http://dx.doi.org/10.1063/1.4749807
SU M, LI P H, ZHENG S H, et al. Largely enhanced elastico-mechanoluminescence of CaZnOS∶Mn2+ by co-doping with Nd3+ ions [J]. J. Lumin., 2020, 217: 116777. doi: 10.1016/j.jlumin.2019.116777http://dx.doi.org/10.1016/j.jlumin.2019.116777
ZHANG J C, LONG Y Z, WANG X S, et al. Controlling elastico-mechanoluminescence in diphase (Ba, Ca)TiO3∶Pr3+ by co-doping different rare earth ions [J]. RSC Adv., 2014, 4(77): 40665-40675. doi: 10.1039/c4ra05894ahttp://dx.doi.org/10.1039/c4ra05894a
JIA Y, YEI M, JIA W Y. Stress-induced mechanoluminescence in SrAl2O4∶Eu2+, Dy3+ [J]. Opt. Mater., 2006, 28(8-9): 974-979. doi: 10.1016/j.optmat.2005.05.014http://dx.doi.org/10.1016/j.optmat.2005.05.014
SAHU I P, BISEN D P, BRAHME N, et al. Enhancement of the photoluminescence and long afterglow properties of Sr2MgSi2O7∶Eu2+ phosphor by Dy3+ co-doping [J]. Luminescence, 2015, 30(8): 1318-1325. doi: 10.1002/bio.2900http://dx.doi.org/10.1002/bio.2900
FAN X H, ZHANG J C, ZHANG M, et al. Piezoluminescence from ferroelectric Ca3Ti2O7∶Pr3+ long-persistent phosphor [J]. Opt. Express, 2017, 25(13): 14238-14246. doi: 10.1364/oe.25.014238http://dx.doi.org/10.1364/oe.25.014238
HU R, ZHANG Y, ZHAO Y, et al. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display [J]. Mater. Chem. Front., 2021, 5(18): 6891-6903. doi: 10.1039/d1qm00723hhttp://dx.doi.org/10.1039/d1qm00723h
RAHIMI M R, YUN G J, DOLL G L, et al. Effects of persistent luminescence decay on mechanoluminescence phenomena of SrAl2O4∶Eu2+, Dy3+ materials [J]. Opt. Lett., 2013, 38(20): 4134-4137. doi: 10.1364/ol.38.004134http://dx.doi.org/10.1364/ol.38.004134
YUAN L F, JIN Y H, SU Y, et al. Optically stimulated luminescence phosphors: principles, applications, and prospects [J]. Laser Photon. Rev., 2020, 14(12): 2000123-1-34. doi: 10.1002/lpor.202000123http://dx.doi.org/10.1002/lpor.202000123
0
Views
1304
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution