浏览全部资源
扫码关注微信
1.广西科技大学 生物与化学工程学院,广西糖资源绿色加工重点实验室,广西 柳州 545006
2.蔗糖产业省部共建协同创新中心,广西 南宁 530004
Published:01 April 2022,
Received:25 December 2021,
Revised:10 January 2022,
扫 描 看 全 文
Bao CUI, Qiu-mei HUANG, Xi-lin RONG, et al. Preparation of Switchable ZnO-NH2 QDs Fluorescent Probe and Its Application in Specific Detection of Cu2+. [J]. Chinese Journal of Luminescence 43(4):620-632(2022)
Bao CUI, Qiu-mei HUANG, Xi-lin RONG, et al. Preparation of Switchable ZnO-NH2 QDs Fluorescent Probe and Its Application in Specific Detection of Cu2+. [J]. Chinese Journal of Luminescence 43(4):620-632(2022) DOI: 10.37188/CJL.20210408.
采用溶胶凝胶法制备出一种荧光性能稳定的氧化锌量子点(ZnO-NH
2
QDs),并对其进行紫外-可见光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、透射电子显微镜(TEM)、X 射线光电子能谱(XPS)、荧光(PL)表征。基于Cu
2+
对ZnO-NH
2
QDs动态荧光猝灭且Cu
2+
可与邻苯二胺(OPD,为非荧光物质)反应生成具有黄色荧光的2
3-二氨基吩嗪(DAP)的机理,开发了一种具有特异性识别Cu
2+
的ZnO-NH
2
QDs荧光探针以及ZnO-NH
2
QDs+Cu
2+
+OPD荧光传感系统。该探针在40~9 000 nmol/L的线性范围内检测Cu
2+
,检测限(LOD)为3.93 nmol/L。在自来水中的加标回收率范围为98%~100.58%,在柳江水中Cu
2+
的加标回收率范围为97.43%~101.47%。实验结果表明该探针对Cu
2+
有较好的选择性和准确度,能为金属离子Cu
2+
的荧光快速检测提供一种新思路。
In this paper
a kind of fluorescence stable ZnO-NH
2
QDs was prepared by sol-gel method. ZnO-NH
2
QDs were characterized by UV-visible spectroscopy(UV-Vis)
Fourier transform infrared spectroscopy(FTIR)
X-ray diffraction(XRD)
transmission electron microscopy(TEM)
X-ray photoelectron spectroscopy(XPS)
and fluorescence(PL). Based on the dynamic fluorescence quenched of ZnO-NH
2
QDs by Cu
2+
and the mechanism that Cu
2+
can react with o-phenylenediamine(OPD
a non-fluorescent substance) to form 2
3-diaminophenothiazine (DAP) with yellow fluorescence
a fluorescent probe for ZnO-NH
2
QDs with specific recognition of Cu
2+
and a ZnO-NH
2
QDs+Cu
2+
+OPD fluorescence sensing system were developed. The probe detected Cu
2+
over a linear range of 40-9 000 nmol/L with detection limit of 3.93 nmol/L. The recovery rate of standard addition ranged from 98% to 100.58% in tap water
and that was 97.43% to 101.47% in Liujiang water. The experimental results show that the probe has good selectivity and accuracy for Cu
2+
which can provide a new idea for the fluorescence rapid detection of Cu
2+
metal ions.
氧化锌量子点开关式荧光探针Cu2+
ZnO quantum dotsswitchable fluorescence probeCu2+
GHOSH P, ROZENBERG I, MAAYAN G. Sequence-function relationship within water-soluble peptoid chelators for Cu2+ [J]. J. Inorg. Biochem., 2021, 217:111388-1-7.
GAGGELLI E, KOZLOWSKI H, VALENSIN D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimer's,prion,and Parkinson's diseases and amyotrophic lateral sclerosis) [J]. Chem. Rev., 2006, 106(6):1995-2044.
SU C L, CHEN Y S, CHEN K L, et al. Inhibitory potency of 4-substituted sampangine derivatives toward Cu2+ mediated aggregation of amyloid β-peptide,oxidative stress,and inflammation in Alzheimer's disease [J]. Neurochem. Int., 2020, 139:104794.
CUI Z W, BU W B, FAN W P, et al. Sensitive imaging and effective capture of Cu2+:towards highly efficient theranostics of Alzheimer's disease [J]. Biomaterials, 2016, 104:158-167.
RAMIS R, ORTEGA-CASTRO J, VILANOVA B, et al. Cu2+,Ca2+,and methionine oxidation expose the hydrophobic α-synuclein NAC domain [J]. Int. J. Biol. Macromol., 2021, 169:251-263.
DING L J, GAO Y, DI J W. A Sensitive plasmonic copper(Ⅱ) sensor based on gold nanoparticles deposited on ITO glass substrate [J]. Biosens. Bioelectron., 2016, 83:9-14.
ZHANG Y S, ZHAO H B, MENG X Y, et al. Mineralogical phase transformation of Fe containing sphalerite at acidic environments in the presence of Cu2+ [J]. J. Hazard. Mater., 2021, 403:124058-1-10.
LIU P, BORRELL P F, BOŽIČ M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+,Cu2+ and Fe3+ from industrial effluents [J]. J. Hazard. Mater., 2015, 294:177-185.
LIU B K, MU L L, ZHANG J T, et al. TiO2/Cu2(OH)2CO3 nanocomposite as efficient antimicrobials for inactivation of crop pathogens in agriculture [J]. Mater. Sci. Eng. C, 2020, 107:110344-1-8.
ES’HAGHI Z, AZMOODEH R. Hollow fiber supported liquid membrane microextraction of Cu2+ followed by flame atomic absorption spectroscopy determination [J]. Arab. J. Chem., 2010, 3(1):21-26.
KALANIDHI K, NAGARAAJ P, ASWATHY C A, et al. A highly selective and sensitive spectroscopic method for detection of Cu2+ in aqueous solution using polyaniline [J]. Chem. Phys. Lett., 2020, 739:136929-1-6.
CHU Y R, GAO F, GAO F, et al. Enhanced stripping voltammetric response of Hg2+,Cu2+,Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application [J]. J. Electroanal. Chem., 2019, 835:293-300.
RAMKI K, SAKTHIVEL P. A novel electrochemical platform based on indenoindole for selective detection of Cu2+ ions in Punica granatum fruit juice [J]. J. Electroanal. Chem., 2020, 861:113936-1-8.
BEYENE B B, YIBELTAL A W, AYANA M T. Colorimetric and fluorescent on-off detection of Cu2+,Sn2+ and Zn2+ by a water-soluble porphyrin:electronic absorption and emission study [J]. Results Chem., 2020, 2:100058-1-20.
HAN J, TANG X, WANG Y, et al. A quinoline-based fluorescence “on-off-on” probe for relay identification of Cu2+ and Cd2+ ions [J]. Spectrochim. Acta Part A, 2018, 205:597-602.
PAWAR S P, GORE A H, WALEKAR L S, et al. Quantum dots based “On-Off” fluorescence probe for the selective detection of Cu2+ ion:application to real sample analysis [J]. Chem. Data Collect., 2019, 24:100300.
HAN Z, NAN D Y, YANG H, et al. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione [J]. Sens. Actuators B Chem., 2019, 298:126842-1-9.
MIRZAEI H, DARROUDI M. Zinc oxide nanoparticles:biological synthesis and biomedical applications [J]. Ceram. Int., 2017, 43(1):907-914.
TERESHCHENKO A, BECHELANY M, VITER R, et al. Optical biosensors based on ZnO nanostructures:advantages and perspectives. A review [J]. Sens. Actuators B Chem., 2016, 229:664-677.
COSTAS-MORA I, ROMERO V, LAVILLA I, et al. An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis [J]. TrAC Trends Anal. Chem., 2014, 57:64-72.
R C H, SCHIFFMAN J D, BALAKRISHNA R G. Quantum dots as fluorescent probes:synthesis,surface chemistry,energy transfer mechanisms,and applications [J]. Sens. Actuators B Chem., 2018, 258:1191-1214.
GUI R J, JIN H, BU X N, et al. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers [J]. Coord. Chem. Rev., 2019, 383:82-103.
ZHOU M, CHENG L, CHEN Z F, et al. CdSe QDs@MoS2 nanocomposites with enhanced photocatalytic activity towards ceftriaxone sodium degradation under visible-light irradiation [J]. J. Alloys Compd., 2021, 869:159322-1-11.
KUANG H, ZHAO Y, MA W, et al. Recent developments in analytical applications of quantum dots [J]. TrAC Trends Anal. Chem., 2011, 30(10):1620-1636.
GUO R T, LI L, WANG B W, et al. Functionalized carbon dots for advanced batteries [J]. Energy Storage Mater., 2021, 37:8-39.
LI N X, LEI F, XU D D, et al. One-step synthesis of N,P co-doped orange carbon quantum dots with novel optical properties for bio-imaging [J]. Opt. Mater., 2021, 111:110618-1-9.
XU X Y, XU C X, WANG X M, et al. Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots [J]. CrystEngComm, 2013, 15(5):977-981.
ROSHINI A, JAGADEESAN S, ARIVAZHAGAN L, et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line [J]. Mater. Sci. Eng. C, 2018, 92:477-488.
ENSAFI A A, ZAKERY M, REZAEI B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer [J]. Spectrochim. Acta Part A, 2019, 206:460-465.
YE Y F. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol-gel method [J]. J. Mater. Sci. Mater. Electron., 2018, 29(6):4967-4974.
LU P J, HUANG S C, CHEN Y P, et al. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics [J]. J. Food Drug Anal., 2015, 23(3):587-594.
ANUNTAHIRUNRAT J, SUNG Y M, POOYODYING P. Efficiency of Nb-doped ZnO nanoparticles electrode for dye-sensitized solar cells application [J]. IOP Conf. Ser. Mater. Sci. Eng., 2017, 229:012019-1-5.
BHATIA S, VERMA N, BEDI R K. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques [J]. Results Phys., 2017, 7:801-806.
HONG H, WANG F, ZHANG Y, et al. Red fluorescent zinc oxide nanoparticle:a novel platform for cancer targeting [J]. ACS Appl. Mater. Interfaces, 2015, 7(5):3373-3381.
REHMAN G U, TAHIR M, GOH P S, et al. Enhancing the photodegradation of phenol using Fe3O4/SiO2 binary nanocomposite mediated by silane agent [J]. J. Phys. Chem. Solids, 2021, 153:110022-1-11.
KADAM V V, BALAKRISHNAN R M, ETTIYAPPAN J P. Fluorometric detection of bisphenol A using β-cyclodextrin-functionalized ZnO QDs [J]. Environ. Sci. Pollut. Res., 2021, 28(10):11882-11892.
邹桐. 基于氧化锌量子点的金属离子荧光检测性能研究 [D]. 昆明:云南大学, 2020.
ZOU T. Fluorescence Detection of Metal Ions Based on Zinc Oxide Quantum Dots [D]. Kunming:Yunnan University, 2020. (in Chinese)
ZHANG B H, LI M, SONG Z L, et al. Sensitive H2S gas sensors employing colloidal zinc oxide quantum dots [J]. Sens. Actuators B Chem., 2017, 249:558-563.
WANG D D, XING G Z, YANG J H, et al. Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers [J]. J. Alloys Compd., 2010, 504(1):22-26.
THOOL G S, ARUNAKUMARI M, SINGH A K, et al. Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures:a morphological evaluation [J]. Bull. Mater. Sci., 2015, 38(6):1519-1525.
NSANZAMAHORO S, WANG W F, ZHANG Y, et al. Synthesis of orange-emissive silicon nanoparticles as “off-on” fluorescence probe for sensitive and selective detection of l-methionine and copper [J]. Talanta, 2021, 231:122369-1-9.
FANNA D J, LIMA L M P, WEI G, et al. A colorimetric chemosensor for quantification of exchangeable Cu2+ in soil [J]. Chemosphere, 2020, 238:124664-1-7.
DENG X Y, FENG Y L, HE D S, et al. Synthesis of functionalized carbon quantum dots as fluorescent probes for detection of Cu2+ [J]. Chin. J. Anal. Chem., 2020, 48(10):e20126-e20133.
PENG X X, BAO G M, ZHONG Y F, et al. Highly selective detection of Cu2+ in aqueous media based on Tb3+-functionalized metal-organic framework [J]. Spectrochim. Acta Part A, 2020, 240:118621-1-8.
GENG S, LIN S M, LI N B, et al. Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper(II) ion [J]. Sens. Actuators B Chem., 2017, 253:137-143.
YAO J L, ZHANG K, ZHU H J, et al. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions [J]. Anal. Chem., 2013, 85:6461-6468.
LIU X, YANG Y, XING X X, et al. Grey level replaces fluorescent intensity:fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer [J]. Sens. Actuators B Chem., 2018, 255:2356-2366.
0
Views
188
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution