浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
Published:05 July 2022,
Received:20 December 2021,
Revised:05 January 2022,
扫 描 看 全 文
刁肇悌,陈威,董鑫等.砷化镓热氧化法制备β⁃Ga2O3体块薄膜[J].发光学报,2022,43(07):1095-1101.
DIAO Zhao-ti,CHEN Wei,DONG Xin,et al.β-Ga2O3 Bulk Films Prepared by Thermal Oxidation of GaAs[J].Chinese Journal of Luminescence,2022,43(07):1095-1101.
刁肇悌,陈威,董鑫等.砷化镓热氧化法制备β⁃Ga2O3体块薄膜[J].发光学报,2022,43(07):1095-1101. DOI: 10.37188/CJL.20210399.
DIAO Zhao-ti,CHEN Wei,DONG Xin,et al.β-Ga2O3 Bulk Films Prepared by Thermal Oxidation of GaAs[J].Chinese Journal of Luminescence,2022,43(07):1095-1101. DOI: 10.37188/CJL.20210399.
通过对p型砷化镓(p⁃GaAs)单晶衬底高温热氧化方法制备了β⁃Ga
2
O
3
体块薄膜。探讨了高温氧化过程中O
2
流量对β⁃Ga
2
O
3
体块薄膜形貌的影响。通过对体块薄膜的晶体质量、结构特性、光致发光特性的测试分析,可以发现在高温高氧环境下GaAs转变为β⁃Ga
2
O
3
体块薄膜的过程与Langmuir蒸发相关。当O
2
流量较低时(0.2 L/min),GaAs衬底处于缺氧状态,所制备样品呈现纳米线状形貌;而当通入O
2
流量超过0.4 L/min时,GaAs衬底被完全氧化为具有纳米岛状结构的β⁃Ga
2
O
3
体块薄膜,且晶体质量得到显著提高。本文提出的砷化镓单晶热氧化工艺可以高效、低成本地获得较高结晶质量的纳米结构β⁃Ga
2
O
3
体块薄膜,对于β⁃Ga
2
O
3
材料的应用具有极大的丰富作用。
In this paper, β-Ga
2
O
3
bulk films were prepared by high-temperature thermal oxidation of p-type gallium arsenide (p-GaAs) single crystal substrate. The effect of O
2
flow rate on the morphology of β-Ga
2
O
3
bulk films was also discussed. By testing and analysing the crystal quality, structural characteristics and photoluminescence characteristics of the bulk films, we found that the transformation of GaAs into β-Ga
2
O
3
bulk films was related to Langmuir evaporation. When the O
2
flow rate was low(0.2 L/min), GaAs substrate was in anoxic state, and the prepared samples showed nanolinear morphology. However, when the flow rate of O
2
exceeds 0.4 L/min, GaAs substrate is completely oxidized into β-Ga
2
O
3
bulk film with nanometer island structure, and the crystal quality is significantly improved. The thermal oxidation process based on the GaAs single crystal proposed in this article can obtain nano-structured β-Ga
2
O
3
bulk films of high crystal quality with high efficiency and low cost. This process enriches the application of β-Ga
2
O
3
materials greatly.
热氧化纳米岛状体块薄膜β-Ga2O3氧气流量
thermal oxidationnano island bulk filmβ-Ga2O3oxygen flow rate
KIM S,ZHANG Y W,YUAN C,et al. Thermal management of β-Ga2O3 current aperture vertical electron transistors [J]. IEEE Trans.Compon.,Packaging Manuf. Technol., 2021,11(8):1171-1176. doi: 10.1109/tcpmt.2021.3089321http://dx.doi.org/10.1109/tcpmt.2021.3089321
JESENOVEC J,WEBER M H,PANSEGRAU C,et al. Gallium vacancy formation in oxygen annealed β-Ga2O3 [J]. J. Appl. Phys., 2021,129(24):245701-1-9. doi: 10.1063/5.0053325http://dx.doi.org/10.1063/5.0053325
COOKE J,SENSALE-RODRIGUEZ B,GHADBEIGI L. Methods for synthesizing β-Ga2O3 thin films beyond epitaxy [J]. J. Phys. Photonics, 2021,3(3):032005-1-16. doi: 10.1088/2515-7647/ac0db5http://dx.doi.org/10.1088/2515-7647/ac0db5
WANG Y H,LI H R,CAO J,et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction [J]. ACS Nano, 2021,15(10):16654-16663. doi: 10.1021/acsnano.1c06567http://dx.doi.org/10.1021/acsnano.1c06567
郭道友,李培刚,陈政委,等. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展 [J]. 物理学报, 2019,68(7):078501-1-36. doi: 10.7498/aps.68.20181845http://dx.doi.org/10.7498/aps.68.20181845
GUO D Y,LI P G,CHEN Z W,et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector [J]. Acta Phys. Sinica, 2019,68(7):078501-1-36. (in Chinese). doi: 10.7498/aps.68.20181845http://dx.doi.org/10.7498/aps.68.20181845
XING Y H,ZHANG Y,HAN J,et al. Research of nanopore structure of Ga2O3 film in MOCVD for improving the performance of UV photoresponse [J]. Nanotechnology, 2021,32(9):095301-1-8. doi: 10.1088/1361-6528/abc4a2http://dx.doi.org/10.1088/1361-6528/abc4a2
ZHANG J H,JIAO S J,WANG D B,et al. Nano tree-like branched structure with α-Ga2O3 covered by γ-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method [J]. Appl. Surf. Sci., 2021,541:148380-1-8. doi: 10.1016/j.apsusc.2020.148380http://dx.doi.org/10.1016/j.apsusc.2020.148380
DE MELO R P JR,OLIVEIRA N T C,DOMINGUEZ C T,et al. Urchin-like artificial gallium oxide nanowires grown by a novel MOCVD/CVD-based route for random laser application [J]. J. Appl. Phys., 2016,119(16):163107-1-9. doi: 10.1063/1.4947290http://dx.doi.org/10.1063/1.4947290
LI J S,ZHANG X D,CAO X,et al. Self-catalyzed metal organic chemical vapor deposition growth of vertical β-Ga2O3 nanowire arrays [J]. Nanotechnology, 2020,31(2):02LT01-1-6. doi: 10.1088/1361-6528/ab4774http://dx.doi.org/10.1088/1361-6528/ab4774
ALHALAILI B,VIDU R,MAO H,et al. Comparative study of growth morphologies of Ga2O3 nanowires on different substrates [J]. Nanomaterials, 2020,10(10):1920-1-11. doi: 10.3390/nano10101920http://dx.doi.org/10.3390/nano10101920
LEONTIE L,SPRINCEAN V,UNTILA D,et al. Synthesis and optical properties of Ga2O3 nanowires grown on GaS substrate [J]. Thin Solid Films, 2019,689:137502-1-6. doi: 10.1016/j.tsf.2019.137502http://dx.doi.org/10.1016/j.tsf.2019.137502
PATIL-CHAUDHARI D,OMBABA M,OH J Y,et al. Solar blind photodetectors enabled by nanotextured β-Ga2O3 films grown via oxidation of GaAs substrates [J]. IEEE Photonics J., 2017,9(2):2300207-1-10. doi: 10.1109/jphot.2017.2688463http://dx.doi.org/10.1109/jphot.2017.2688463
HE T,ZHAO Y K,ZHANG X D,et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction [J]. Nanophotonics, 2018,7(9):1557-1562. doi: 10.1515/nanoph-2018-0061http://dx.doi.org/10.1515/nanoph-2018-0061
LI Y B,TOKIZONO T,LIAO M Y,et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection [J]. Adv. Funct. Mater., 2010, 20(22):3972-3978. doi: 10.1002/adfm.201001140http://dx.doi.org/10.1002/adfm.201001140
FILIPPO E,SICILIANO M,GENGA A,et al. Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer [J]. Mater. Res. Bull., 2013,48(5):1741-1744. doi: 10.1016/j.materresbull.2012.08.083http://dx.doi.org/10.1016/j.materresbull.2012.08.083
ALHALAILI B,MAO H,DRYDEN D M,et al. Influence of silver as a catalyst on the growth of β-Ga2O3 nanowires on GaAs [J]. Materials, 2020,13(23):5377-1-14. doi: 10.3390/ma13235377http://dx.doi.org/10.3390/ma13235377
KORBUTOWICZ R,STAFINIAK A,SERAFIŃCZUK J. Ga2O3 nanowires preparation at atmospheric pressure [J]. Mater. Sci.-Pol., 2017,35(2):412-420. doi: 10.1515/msp-2017-0026http://dx.doi.org/10.1515/msp-2017-0026
ZHOU Z Y,ZHENG C X,TANG W X,et al. Congruent evaporation temperature of GaAs(001) controlled by As flux [J]. Appl. Phys. Lett., 2010,97(12):121912-1-3. doi: 10.1063/1.3491552http://dx.doi.org/10.1063/1.3491552
DING Y,GAO P X,WANG Z L. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts:acase of Sn/ZnO [J]. J. Am. Chem. Soc., 2004,126(7):2066-2072. doi: 10.1021/ja039354rhttp://dx.doi.org/10.1021/ja039354r
CHEN W,JIAO T,LI Z M,et al. Preparation of β-Ga2O3 nanostructured films by thermal oxidation of GaAs substrate [J]. Ceram. Int., 2022,48(4):5698-5703. doi: 10.1016/j.ceramint.2021.11.115http://dx.doi.org/10.1016/j.ceramint.2021.11.115
KRANERT C,STURM C,SCHMIDT-GRUND R,et al. Raman tensor elements of β-Ga2O3 [J]. Sci. Rep., 2016,6(1):35964-1-9. doi: 10.1038/srep35964http://dx.doi.org/10.1038/srep35964
MACHON D,MCMILLAN P F,XU B,et al. High-pressure study of the β-to-α transition in Ga2O3 [J].Phys. Rev. B, 2006,73(9):094125-1-9. doi: 10.1103/physrevb.73.094125http://dx.doi.org/10.1103/physrevb.73.094125
WAN K,YOUNG J F. Interaction of longitudinal-optic phonons with free holes as evidenced in Raman spectra from Be-doped p-type GaAs [J]. Phys. Rev. B, 1990,41(15):10772-10779. doi: 10.1103/physrevb.41.10772http://dx.doi.org/10.1103/physrevb.41.10772
伍林,欧阳兆辉,曹淑超,等. 拉曼光谱技术的应用及研究进展 [J]. 光散射学报, 2005,17(2):180-186. doi: 10.3969/j.issn.1004-5929.2005.02.013http://dx.doi.org/10.3969/j.issn.1004-5929.2005.02.013
WU L,OUYANG Z H,CAO S C,et al. Research development and application of Raman scattering technology [J]. Chin. J. Light Scattering, 2005,17(2):180-186. (in Chinese). doi: 10.3969/j.issn.1004-5929.2005.02.013http://dx.doi.org/10.3969/j.issn.1004-5929.2005.02.013
马腾宇,李万俊,何先旺,等. β-Ga2O3纳米材料的尺寸调控与光致发光特性 [J]. 物理学报, 2020,69(10):108102-1-11. doi: 10.7498/aps.69.20200158http://dx.doi.org/10.7498/aps.69.20200158
MA T Y,LI W J,HE X W,et al. Size regulation and photoluminescence propertiesof β-Ga2O3 nanomaterials [J]. Acta Phys. Sinica, 2020,69(10):108102-1-11. (in Chinese). doi: 10.7498/aps.69.20200158http://dx.doi.org/10.7498/aps.69.20200158
HU D Q,ZHUANG S W,DONG X,et al. Growth and properties of one-dimensional β-Ga2O3 nanostructures on c-plane sapphire substrates [J]. Mater. Sci. Semicond. Process., 2018,75:31-35. doi: 10.1016/j.mssp.2017.11.018http://dx.doi.org/10.1016/j.mssp.2017.11.018
FRODASON Y K,JOHANSEN K M,VINES L,et al. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3 [J]. J. Appl. Phys., 2020,127(7):075701-1-9. doi: 10.1063/1.5140742http://dx.doi.org/10.1063/1.5140742
HO Q D,FRAUENHEIM T,DEÁK P. Origin of photoluminescence in β-Ga2O3 [J]. Phys. Rev. B, 2018,97(11):115163-1-4. doi: 10.1103/physrevb.97.115163http://dx.doi.org/10.1103/physrevb.97.115163
冯艳彬. 蓝宝石衬底上氧化镓薄膜的生长与退火研究 [D]. 大连:大连理工大学, 2014.
FENG Y B. Growth and Annealing Study of Gallium Oxide Films on Sapphire Substrates [D]. Dalian:Dalian University of Technology, 2014. (in Chinese)
0
Views
112
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution