浏览全部资源
扫码关注微信
1.长春工业大学 化学工程学院, 材料科学高等研究院,吉林 长春 130012
2.吉林大学化学学院 超分子结构与材料国家重点实验室,吉林 长春 130012
Published:2022-02,
Received:02 November 2021,
Revised:14 November 2021,
扫 描 看 全 文
Jin-na BAI, Liang WANG, Ming-hui WANG, et al. Preparation of Copper/Silver Bimetallic Nanoclusters Stabilized by Penicillamine and Their Application in Silver Ion Detection. [J]. Chinese Journal of Luminescence 43(2):285-295(2022)
Jin-na BAI, Liang WANG, Ming-hui WANG, et al. Preparation of Copper/Silver Bimetallic Nanoclusters Stabilized by Penicillamine and Their Application in Silver Ion Detection. [J]. Chinese Journal of Luminescence 43(2):285-295(2022) DOI: 10.37188/CJL.20210341.
以青霉胺(DPA)为还原剂和稳定剂,通过一锅法一步制备了青霉胺稳定的铜/银双金属纳米簇(DPA-Cu/Ag NCs),并将其作为一种传感器用于检测水样中的银离子。该银离子传感器具有价格低廉、分析速度快速、选择性高等特点。采用透射电子显微镜(TEM)等方法表征了DPA-Cu/Ag NCs的结构及其化学组成,并通过荧光光谱和紫外-可见光谱法研究了DPA-Cu/Ag NCs的光学性质。结果表明,该DPA-Cu/Ag NCs在激发波长为300 nm时的最大发射波长为555 nm,其溶液在可见光照射下呈现乳白色,在紫外灯照射下则呈现出明亮的黄色荧光。在DPA-Cu/Ag NCs的制备条件达到最优化的情况下,可以将其作为探针,用来高选择性、高灵敏性地检测银离子。该探针检测银离子的检测限为0.3 μmol/L,线性范围为0~500 μmol/L。该DPA-Cu/Ag NCs探针还可应用于自然环境水样(湖水、瓶装矿泉水和实验室自来水)中银离子浓度的检测,其检测性能十分优异且具有良好的准确度和重现性,表明DPA-Cu/Ag NCs探针在环境检测方面有非常高的应用价值。
Bimetallic copper-silver nanoclusters(DPA-Cu/Ag NCs) were prepared by one-pot method using penicillamine as reducing agent and stabilizer
and used as a sensor to detect silver ions in water samples. The Ag
+
sensor has the advantages of low price
quick analysis speed and high selectivity. The structure and chemical composition of bimetallic copper-silver nanoclusters were characterized by transmission electron microscopy(TEM). The results showed that the DPA-Cu/Ag NCs exhibited a maximum emission at 555 nm with an excitation wavelength of 300 nm. It is a milky white solution under visible light
and the solution shows bright yellow fluorescence under UV light. When the preparation conditions of DPA-Cu/Ag NCs are optimized
it can be used as a probe to detect silver ions with high selectivity and sensitivity. The detection limit of silver ion is 0.3 μmol/L and the linear range is 0-500 μmol/L. The DPA-Cu/Ag NCs probe can also be applied to the detection of silver ion concentration in natural environmental water samples(lake water
bottled mineral water and laboratory tap water
etc
.)
and its detection performance is excellent with good percent of accuracy and reproducibility
indicating that the DPA-Cu/Ag NCs probe has extremely high application value in environmental monitoring.
金属纳米簇荧光双金属银离子检测
metal nanoclusterfluorescencebi-metalsilver ion detection
GLIBERT P M, HARRISON J, HEIL C, et al. Escalating worldwide use of urea—a global change contributing to coastal eutrophication[J]. Biogeochemistry, 2006, 77(3):441-463.
CHEN H M, ZHENG C R, TU C, et al. Heavy metal pollution in soils in China:status and countermeasures[J]. Ambio, 1999, 28(2):130-134.
VASILEIADIS S, BRUNETTI G, MARZOUK E, et al. Silver toxicity thresholds for multiple soil microbial biomarkers[J]. Environ. Sci. Technol., 2018, 52(15):8745-8755.
RAVAL N P, SHAH P U, SHAH N K. Adsorptive removal of nickel(Ⅱ) ions from aqueous environment:a review[J]. J. Environ. Manage., 2016, 179:1-20.
PELIGRO F R, PAVLOVIC I, ROJAS R, et al. Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides[J]. Chem. Eng. J., 2016, 306:1035-1040.
REAY D S, DAVIDSON E A, SMITH K A, et al. Global agriculture and nitrous oxide emissions[J]. Nat. Clim. Change, 2012, 2(6):410-416.
ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580):51-59.
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
周灵琳. 功能化纳米材料的制备及其对重金属和氮素的迁移控制研究[D]. 合肥: 中国科学技术大学, 2018.
ZHOU L L. Preparation of Functionalized Nanocomposites for Controlling the Migration of Heavy Metal and Nitrogen[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
RATTE H T. Bioaccumulation and toxicity of silver compounds:a review[J]. Environ. Toxicol. Chem., 1999, 18(1):89-108.
BARRIADA J L, TAPPIN A D, EVANS E H, et al. Dissolved silver measurements in seawater[J]. TrAC Trends Anal. Chem., 2007, 26(8):809-817.
天津大学. 一种Ag离子专用显色功能纤维及其制备方法:中国,104452282B[P]. 2016-10-05.
Tianjin University. Special color developing functional fiber for Ag ions and preparation method of special color developing functional fiber:CN,104452282B[P]. 2016-10-05. (in Chinese)
倪湖权. 原子荧光光谱法测定汞、银、稀土元素及铀的研究[D]. 南宁: 广西大学, 2014.
NI H Q. Determination of Mercury,Silver,Rare Earth Elements and Uranium by Atomic Fluorescence Spectrometry[D]. Nanning: Guangxi University, 2014. (in Chinese)
TAN E Z, YIN P G, LANG X F, et al. Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering[J]. Analyst, 2012, 137(17):3925-3928.
SHAMSPUR T, MASHHADIZADEH M H, SHEIKHSHOAIE I. Flame atomic absorption spectrometric determination of silver ion after preconcentration on octadecyl silica membrane disk modified with bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a new schiff baseligand[J]. J. Anal. At. Spectrom., 2003, 18(11):1407-1410.
CHAKRAPANI G, MAHANTA P L, MURTY D S R, et al. Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing[J]. Talanta, 2001, 53(6):1139-1147.
YANG X P, JIA Z H, YANG X C, et al. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples[J]. Saudi J. Biol. Sci., 2017, 24(3):589-594.
JITARU P, TIREZ K, DE BRUCKER N. Panoramic analysis for monitoring trace metals in natural waters by ICP-MS[J]. Atom. Spectrosc., 2003, 24(1):1-10.
LABORDA F, JIMÉNEZ-LAMANA J, BOLEA E, et al. Selective identification, characterization and determination of dissolved silver(Ⅰ) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry[J]. J. Anal. At. Spectrom., 2011, 26(7):1362-1371.
KATARINA R K, TAKAYANAGI T, OSHIMA M, et al. Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples[J]. Anal. Chim. Acta, 2005, 558(1-2):246-253.
NDUNG'U K, RANVILLE M A, FRANKS R P, et al. On-line determination of silver in natural waters by inductively-coupled plasma mass spectrometry:influence of organic matter[J]. Mar. Chem., 2006, 98(2-4):109-120.
MIKELOVA R, BALOUN J, PETRLOVA J, et al. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos[J]. Bioelectrochemistry, 2007, 70(2):508-518.
MOHADESI A, TAHER M A. Stripping voltammetric determination of silver(Ⅰ) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one[J]. Talanta, 2007, 71(2):615-619.
KARANDASHEV V K, SHISHLINA N I, KHVOSTIKOV V A, et al. Analysis of silver and gold samples from the borodino treasure by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry[J]. J. Anal. Chem., 2019, 74(11):1104-1112.
SINGH R P, PAMBID E R. Selective separation of silver from waste solutions on chromium(Ⅲ) hexacyanoferrate(Ⅲ) ion exchanger[J]. Analyst, 1990, 115(3):301-304.
王烨, 曹立峰. 双硫腙-四氯化碳萃取法野外测定矿石中的银[J]. 黄金, 2011, 32(9):60-62.
WANG Y, CAO L F. Field determination of silver in the ore by iphenyl thiocarbazone-carbon tetrachloride extraction[J]. Gold, 2011, 32(9):60-62. (in Chinese)
XU Y J, ZHANG C, DU H X, et al. Fluorometric detection of silver(Ⅰ) using cytosine-Ag(Ⅰ)-cytosine pair formation, DNA assembly and the AND logic operation of a multiple-component DNAzyme[J]. Microchim. Acta, 2019, 186(8):522.
HAN B Y, HOU X F, XIANG R C, et al. Synthesis of highly luminescent Cu/Ag bimetal nanoclusters and their application in a temperature sensor[J]. Anal. Methods, 2017, 9(27):4028-4032.
DARABDHARA G, SHARMA B, DAS M R, et al. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection[J]. Sens. Actuators B:Chem., 2017, 238:842-851.
AN M, LI H, SU M, et al. Cu2+ enhanced fluorescent Ag nanoclusters with tunable emission from red to yellow and the application for Ag+ sensing[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2021, 252:119484.
KONG L C, CHU X F, WANG C X, et al. D-Penicillamine-coated Cu/Ag alloy nanocluster superstructures:aggregation-induced emission and tunable photoluminescence from red to orange[J]. Nanoscale, 2018, 10(4):1631-1640.
刘振平, 庞钶靖, 姜容, 等. 硅量子点的控制合成、表征及对Cu2+的高灵敏传感[J]. 发光学报, 2021, 42(1):73-82.
LIU Z P, PANG K J, JIANG R, et al. Synthesis, characterization of silicon quantum dots and high sensitivity sensing for Cu2+[J]. Chin. J. Lumin., 2021, 42(1):73-82. (in Chinese)
SENOL A M, BOZKURT E. Facile green and one-pot synthesis of seville orange derived carbon dots as a fluorescent sensor for Fe3+ ions[J]. Microchem. J., 2020, 159:105357.
0
Views
180
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution