浏览全部资源
扫码关注微信
1.汕尾职业技术学院 海洋学院,广东 汕尾 516600
2.汕尾市海洋产业研究院 新能源材料与催化工程研究中心,广东 汕尾 516600
3.华南理工大学 微电子学院,广东 广州 510640
Published:2022-01,
Received:12 October 2021,
Revised:27 October 2021,
扫 描 看 全 文
Cong WANG, Yu-rong LIU, Qiang PENG, et al. Bias Stress Stability of Electric-double-layer ZnO Thin-film Transistor. [J]. Chinese Journal of Luminescence 43(1):129-136(2022)
Cong WANG, Yu-rong LIU, Qiang PENG, et al. Bias Stress Stability of Electric-double-layer ZnO Thin-film Transistor. [J]. Chinese Journal of Luminescence 43(1):129-136(2022) DOI: 10.37188/CJL.20210324.
以环保可降解的天然生物材料制备功能器件越来越受到关注,利用天然鸡蛋清作为栅介质层,采用射频磁控溅射法在其上沉积ZnO 薄膜有源层,制备低压双电层氧化锌基薄膜晶体管(ZnO-TFT)并对其电学特性进行了表征,研究了器件在栅偏压和漏偏压应力下电性能的稳定性及其内在的物理机制。该ZnO-TFT 器件呈现出良好的电特性,载流子饱和迁移率为5.99 cm
2
/(V·s),阈值电压为2.18 V,亚阈值摆幅为0.57 V/dec,开关电流比为1.2×10
5
,工作电压低至3 V。研究表明,在偏压应力作用下,该ZnO-TFT 器件电性能存在一定的不稳定性,我们认为栅偏压应力引起的电性能变化可能来源于栅介质附近及界面处的正电荷聚集、充放电效应和新陷阱态的复合效应;漏偏压应力引起的电性能变化可能来源于焦耳热引起的氧空位及沟道中的电子陷阱。
The use of environmentally friendly and degradable natural biomaterials to make functional devices has attracted more and more attention. Low-operating-voltage electric-double-layer(EDL) ZnO thin-film transistor(ZnO-TFT) was prepared by radio frequency magnetron sputtering by using natural albumen as a gate dielectric layer and ZnO as an active layer. The electrical characteristics of EDL ZnO-TFT was characterized
and the stability and its physical mechanism of the device under gate-bias and drain-bias stresses were investigated. The ZnO-TFT shows good electrical properties with a saturation mobility of 5.99 cm
2
/(V·s)
a threshold voltage of 2.18 V
a subthreshold swing of 0.57 V/dec
an on/off current ratio of 1.2×10
5
and an operating voltage of less than 3 V. Bias-stress stability analysis indicated that the electrical properties of the ZnO-TFT have obvious instability under the gate and drain bias stresses. We believe that the change of electrical properties caused by gate bias stress may come from the positive charge accumulation near the gate dielectric and the interface
the charge discharge effect and the composite effect of new trap states; the change of electrical properties caused by drain bias stress may come from the oxygen vacancy caused by Joule heat and the electron trap in the channel.
薄膜晶体管氧化锌双电层偏压应力稳定性
thin-film transistorzinc oxideelectric double layerbias stressstability
XU W Y, LI H, XU J B, et al. Recent advances of solution-processed metal oxide thin-film transistors[J]. ACS Appl. Mater. Interfaces, 2018, 10(31): 25878-25901.
FORTUNATO E, BARQUINHA P, MARTINS R. Oxide semiconductor thin-film transistors: a review of recent advances[J]. Adv. Mater., 2012, 24(22): 2945-2986.
KAMIYA T, HOSONO H. Material characteristics and applications of transparent amorphous oxide semiconductors[J]. NPG Asia Mater., 2010, 2(1): 15-22.
PARK J S, MAENG W J, KIM H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices[J]. Thin Solid Films, 2012, 520(6): 1679-1693.
JIANG S H, FENG P, YANG Y, et al. Flexible low-voltage In-Zn-O homojunction TFTs with beeswax gate dielectric on paper substrates[J]. IEEE Electron Device Lett., 2016, 37(3): 287-290.
UENO K, SHIMOTANI H, YUAN H, et al. Field-induced superconductivity in electric double layer transistors [J]. J. Phys. Soc. Jpn., 2014, 83(3): 032001-1-16.
WEN J, ZHU L Q, FU Y M, et al. Activity dependent synaptic plasticity mimicked on indium-tin-oxide electric-double-layer transistor[J]. ACS Appl. Mater. Interfaces, 2017, 9(42): 37064-37069.
HE Y L, YANG Y, NIE S, et al. Electric-double-layer transistors for synaptic devices and neuromorphic systems[J]. J. Mater. Chem. C, 2018, 6(20): 5336-5352.
FACCHETTI A. Gels excel[J]. Nat. Mater., 2008, 7(11): 839-840.
YUAN H T, WANG H T, CUI Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling[J]. Acc. Chem. Res., 2015, 48(1): 81-90.
FUJIMOTO T, AWAGA K. Electric-double-layer field-effect transistors with ionic liquids[J]. Phys. Chem. Chem. Phys., 2013, 15(23): 8983-9006.
梁定康, 陈义豪, 徐威, 等. 基于蛋清栅介质的超低压双电层薄膜晶体管[J]. 物理学报, 2018, 67(23): 237302-1-6.
LIANG D K, CHEN Y H, XU W, et al. Ultralow-voltage albumen- gated electric-double-layer thin film transistors[J]. Acta Phys. Sinica, 2018, 67(23): 237302-1-6. (in Chinese)
GUO L Q, XU G, XU C, et al. Egg albumen-based biopolymer electrolyte lateral capacitive coupling thin-film transistors on logical operation[J]. Org. Electron., 2021, 93: 106109-1-17.
GUO L Q, XU C, ZHOU H L, et al. Natural chicken albumen gate dielectric for coplanar oxide electrochemical transistors with tunable threshold voltage[J]. Org. Electron., 2020, 77: 105517.
ZHU J X, ZHOU W L, WANG Z Q, et al. Flexible, transferable and conformal egg albumen based resistive switching memory devices[J]. RSC Adv., 2017, 7(51): 32114-32119.
KIM S J, JEON D B, PARK J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate[J]. ACS Appl. Mater. Interfaces, 2015, 7(8): 4869-4874.
JEON D B, BAK J Y, YOON S M. Oxide thin-film transistors fabricated using biodegradable gate dielectric layer of chicken albumen[J]. Jpn. J. Appl. Phys., 2013, 52(12R): 128002-1-3.
HU W N, JIANG J, XIE D D, et al. Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications[J]. Nanoscale, 2018, 10(31): 14893-14901.
蒋双鹤. 低压铟锌氧双电层晶体管研究[D]. 南京: 南京大学, 2016.
JIANG S H. Low-voltage In-Zn-O Double-layer Thin Film Transistor Research[D]. Nanjing: Nanjing University, 2016. (in Chinese)
周斌. 低压ITO基薄膜晶体管研究[D]. 长沙: 湖南大学, 2012.
ZHOU B. Study of Low Voltage ITO-based Thin Film Transistors[D]. Changsha: Hunan University, 2012. (in Chinese)
杨雅涵. 基于葡聚糖介电质的超柔性可降解有机突触晶体管的制备及其特性研究[D]. 长春: 东北师范大学, 2021.
YANG Y H. Fabrication and Properties of Dextran-based Ultraflexible Degradable Organic Synaptic Transistors[D]. Changchun: Northeast Normal University, 2021. (in Chinese)
聂莎. 低压氧化物双电层突触晶体管及其湿度传感应用[D]. 南京: 南京大学, 2019.
NIE S. Low-voltage Oxide-based Electric-double-layer Synaptic Transistors and Their Humidity Sensing Applications[D]. Nanjing: Nanjing University, 2019. (in Chinese)
黄荷. 基于鸡蛋清栅介质的双电层氧化锌薄膜晶体管研究[D]. 广州: 华南理工大学, 2018.
HUANG H. Study on Electric Double Layer ZnO Thin-film Transistors with Chicken Albumen Dielectric[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
刘玉荣, 黄荷, 刘杰. 室温下溅射法制备高迁移率氧化锌薄膜晶体管[J]. 发光学报, 2017, 38(7): 917-922.
LIU Y R, HUANG H, LIU J. High mobility ZnO thin-film transistor fabricated by sputtering at room temperature[J]. Chin. J. Lumin., 2017, 38(7): 917-922. (in Chinese)
LEE J M, CHO I T, LEE J H, et al. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors[J]. Appl. Phys. Lett., 2008, 93(9): 093504-1-3.
TSAI C T, CHANG T C, CHEN S C, et al. Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor[J]. Appl. Phys. Lett., 2010, 96(24): 242105-1-3.
LI H C, LIU Y R, GENG K W, et al. Temperature dependence of the electrical characteristics of ZnO thin film transistor with high-k NbLaO gate dielectric[J]. J. Vac. Sci. Technol. B, 2021, 39(1): 012202.
0
Views
150
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution