浏览全部资源
扫码关注微信
1.中国原子能科学研究院 核物理所,北京 102413
2.国防科技工业抗辐照应用技术创新中心,北京 102413
3.中国科学院半导体研究所 光电子器件国家工程中心,北京 100083
4.中国科学院大学,北京 100049
Published:2022-01,
Received:22 September 2021,
Revised:11 October 2021,
扫 描 看 全 文
Cui-cui LIU, Nan LIN, Xiao-yu MA, et al. High Performance InGaAs/AlGaAs Quantum Well Semiconductor Laser Diode with Non-absorption Window. [J]. Chinese Journal of Luminescence 43(1):110-118(2022)
Cui-cui LIU, Nan LIN, Xiao-yu MA, et al. High Performance InGaAs/AlGaAs Quantum Well Semiconductor Laser Diode with Non-absorption Window. [J]. Chinese Journal of Luminescence 43(1):110-118(2022) DOI: 10.37188/CJL.20210306.
为了解决限制近红外单发射区InGaAs/AlGaAs量子阱半导体激光二极管失效阈值功率提升的腔面光学灾变损伤问题,研制了一种带有Si杂质诱导量子阱混杂非吸收窗口的新型激光二极管,并对其性能进行了测试分析。首先,对于带有非吸收窗口的二极管,在其谐振腔上方前后腔面附近的窗口区域覆盖50 nm Si/100 nm SiO
2
组合介质层,在远离腔面的增益区域覆盖50 nm Si/100 nm TiO
2
组合介质层,并采用875 ℃/90 s快速热处理工艺促进Si杂质扩散诱导量子阱混杂并去除非辐射复合中心。然后,基于相同外延结构、相同流片工艺制备了无非吸收窗口的激光二极管作对照组。测试结果显示,带有非吸收窗口的新型激光二极管平均峰值输出功率提升约33.6%,平均峰值输出电流提升约50.4%,腔面光学灾变损伤的发生概率和破坏程度均明显降低,且其阈值电流、斜率效率及半高全宽等特性也无任何退化。该研究证明,采用Si杂质诱导量子阱混杂技术制备的非吸收窗口,对近红外单发射区InGaAs/AlGaAs量子阱半导体激光二极管腔面光学灾变损伤有明显的抑制效果。
In order to solve catastrophic optical mirror damage(COMD)
the problem of limiting the output power of near-infrared single-emitting InGaAs/AlGaAs quantum well semiconductor laser diodes(LD)
a new-typed LD with a non-absorption window(NAW) based on Si impurity induced quantum well intermixing(QWI) technology was designed and fabricated
and its performance is tested and analyzed. Firstly
for the diode with NAW
a 50 nm Si/100 nm SiO
2
composite dielectric layer is covered in the window region near the front and rear cavity surfaces above the cavity
and a 50 nm Si/100 nm TiO
2
composite dielectric layer is covered in the gain region far away from the cavity surface. A rapid thermal annealing(RTA) process of 875 ℃/90 s is used to promote Si impurity diffusion induces QWI and remove non-radiation recombination centers. Then
based on the same epitaxial structure and preparation process
the traditional LD without NAW is prepared as the control group. Finally
the test results show that the catastrophic failure threshold power and the catastrophic failure threshold current of the new LD with NAW increase about 33.6% and 50.4%
respectively
and the occurrence probability and damage degree of COMD of the new LD are significantly reduced. Moreover
there is no degradation of the characteristics of threshold current
slope efficiency and full width half maximum of the new LD. This study proves that the NAW prepared by Si impurity induced QWI technology has a significant suppression effect on the COMD of near-infrared single-emitting InGaAs/AlGaAs quantum well semiconductor LD.
半导体激光二极管腔面光学灾变损伤量子阱混杂非吸收窗口
semiconductor laserscatastrophic optical mirror damagequantum well intermixingnon-absorption window
胡雪莹, 董海亮, 贾志刚, 等. GaAs基980 nm高功率半导体激光器的研究进展[J]. 人工晶体学报, 2021, 50(2): 381-390.
HU X Y, DONG H L, JIA Z G, et al. Research progress of GaAs based 980 nm high power semiconductor lasers[J]. J. Synth. Cryst., 2021, 50(2): 381-390. (in Chinese)
袁庆贺, 井红旗, 张秋月, 等. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003-1-14.
YUAN Q H, JING H Q, ZHANG Q Y, et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser Optoelectron. Prog., 2019, 56(4): 040003-1-14. (in Chinese)
刘启坤, 孔金霞, 朱凌妮, 等. 电致发光用于大功率半导体激光器失效模式分析[J]. 发光学报, 2018, 39(2): 180-187.
LIU Q K, KONG J X, ZHU L N, et al. Failure mode analysis of high-power laser diodes by electroluminescence[J]. Chin. J. Lumin., 2018, 39(2): 180-187. (in English)
宋悦, 宁永强, 秦莉, 等. 大功率半导体激光器抗腔面灾变性光学损伤技术综述[J]. 半导体光电, 2020, 41(5): 618-626.
SONG Y, NING Y Q, QIN L, et al. Review on the methods of preventing catastrophic optical mirror damage in high-power diode lasers[J]. Semicond. Optoelectron., 2020, 41(5): 618-626. (in Chinese)
HOU L P, MARSH J H. Photonic integrated circuits based on quantum well intermixing techniques[J]. Procedia Eng., 2016, 140: 107-114.
LIN T, ZHANG H Q, SUN H, et al. Impurity free vacancy diffusion induced quantum well intermixing based on hafnium dioxide films[J]. Mater. Sci. Semicond. Process., 2015, 29: 150-154.
何天将, 井红旗, 朱凌妮, 等. 对915 nm InGaAsP/GaAsP初次外延片量子阱混杂的研究[J/OL]. (2021-08-03)[2021-09-08]. 光学学报, http://kns.cnki.net/kcms/detail/31.1252.O4.20210802.1715.020.htmlhttp://kns.cnki.net/kcms/detail/31.1252.O4.20210802.1715.020.html.
HE T J, JING H Q, ZHU L N, et al. Research on quantum well intermixing of 915 nm InGaAsP/GaAsP primary epitaxial wafers[J/OL]. (2021-08-03)[2021-09-08]. Acta Opt. Sinica, http://kns.cnki.net/kcms/detail/31.1252.O4.20210802.1715.020.htmlhttp://kns.cnki.net/kcms/detail/31.1252.O4.20210802.1715.020.html. (in Chinese)
刘翠翠, 林楠, 熊聪, 等. Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究[J]. 中国光学, 2020, 13(1): 203-216.
LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chin. Opt., 2020, 13(1): 203-216. (in English)
田伟男, 熊聪, 王鑫, 等. 基于GaAs膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究[J]. 发光学报, 2018, 39(8): 1095-1099.
TIAN W N, XIONG C, WANG X, et al. Impurity-free vacancy diffusion induces intermixing in GaInP/AlGaInP quantum wells using GaAs encapsulation[J]. Chin. J. Lumin., 2018, 39(8): 1095-1099. (in Chinese)
王鑫, 赵懿昊, 朱凌妮, 等. 基于SiO2薄膜的915 nm半导体激光器的无杂质空位诱导量子阱混合研究[J]. 光子学报, 2018, 47(3): 0314003-1-7.
WANG X, ZHAO Y H, ZHU L N, et al. Impurity-free vacancy diffusion induces quantum well intermixing in 915 nm semiconductor laser based on SiO2 film[J]. Acta Photonica Sinica, 2018, 47(3): 0314003-1-7. (in Chinese)
COOPER D P, GOOCH C H, SHERWELL R J. Internal self-damage of gallium arsenide lasers[J]. IEEE J. Quantum Elect., 1966, 2(8): 329-330.
CHINONE N, NAKASHIMA H, ITO R. Long-term degradation of GaAs-Ga1-xAlxAs DH lasers due to facet erosion[J]. J. Appl. Phys., 1977, 48(3): 1160-1162.
EPLER J E, BURNHAM R D, THORNTON R L, et al. Laser induced disordering of GaAs-AlGaAs superlattice and incorporation of Si impurity[J]. Appl. Phys. Lett., 1986, 49(21): 1447-1449.
DEPPE D G, GUIDO L J, JRHOLONYAK N, et al. Stripe-geometry quantum well heterostructure AlxGa1-xAs-GaAs lasers defined by defect diffusion[J]. Appl. Phys. Lett., 1986, 49(9): 510-512.
MEI P, YOON H W, VENKATESAN T, et al. Kinetics of silicon-induced mixing of AlAs-GaAs superlattices[J]. Appl. Phys. Lett., 1987, 50(25): 1823-1825.
MORITA T, NAGAKURA T, TORII K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(4): 1502104-1-4.
LIAO M Y, LI W, TANG M C, et al. Selective area intermixing of Ⅲ-Ⅴ quantum-dot lasers grown on silicon with two wavelength lasing emissions[J]. Semicond. Sci. Technol., 2019, 34(8): 085004-1-9.
GARESO P L, BUDA M, FU L, et al. Influence of SiO2 and TiO2 dielectric layers on the atomic intermixing of InxGa1-xAs/InP quantum well structures[J]. Semicond. Sci. Technol., 2007, 22(9): 988-992.
李岩. 808 nm、905 nm高功率半导体激光器结构设计及外延生长[D]. 北京: 北京工业大学, 2016.
LI Y. Structure Design and Epitaxy Growth of High Power Semiconductor Laser Diodes Emitting at 808 nm and 905 nm[D]. Beijing: Beijing University of Technology, 2016. (in Chinese)
0
Views
182
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution