Qiu-feng SHI, Lei WANG, Hai-jie GUO, et al. Luminescence Properties of Pr3+ Doped in Ba3La(PO4)3 with Vacuum Ultraviolet and X-ray Excitation. [J]. Chinese Journal of Luminescence 42(11):1756-1762(2021)
DOI:
Qiu-feng SHI, Lei WANG, Hai-jie GUO, et al. Luminescence Properties of Pr3+ Doped in Ba3La(PO4)3 with Vacuum Ultraviolet and X-ray Excitation. [J]. Chinese Journal of Luminescence 42(11):1756-1762(2021) DOI: 10.37188/CJL.20210281.
Luminescence Properties of Pr3+ Doped in Ba3La(PO4)3 with Vacuum Ultraviolet and X-ray Excitation增强出版
The radiative transition rate of Pr,3+,4f5d is large, which makes it as a promising luminescence center of fast scintillators. Samples of Ba,3,La(PO,4,),3,(BLP) activated with Pr,3+, were prepared through high temperature solid state method and characterized by XRD, temperature-dependent luminescence spectra upon VUV-UV and X-ray excitations and decay curves. Efficient and thermal stable Pr,3+,4f5d broad band emission with decay time of ~15 ns was observed. There is energy transfer from host to Pr,3+,4f5d upon excitation at 172 nm, however, the energy transfer is absent upon X-ray excitation which is attributed to influence of defects on surface. The results indicate that BLP∶Pr,3+, could be applied as an efficient VUV to UV-C converting material. In addition, the research is also important for designing novel fast scintillators.
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv. Opt. Mater., 2015, 3(4): 463-481.
RONDA C, WIECZOREK H, KHANIN V, et al. Review—scintillators for medical imaging:a tutorial overview[J]. ECS J. Solid State Sci. Technol., 2016, 5(1): R3121-R3125.
DUJARDIN C, AUFFRAY E, BOURRET-COURCHESNE E, et al. Needs, trends, and advances in inorganic scintillators[J]. IEEE Trans. Nucl. Sci., 2018, 65(8): 1977-1997.
CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.
IVANOVSKIKH K V, SHI Q F, BETTINELLI M, et al. Unraveling Pr3+ 5d-4f emission in LiLa9(SiO4)6O2 crystals doped with Pr3+ ions[J]. Opt. Mater., 2018, 79: 108-114.
ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light Sci. Appl., 2020, 9(1): 112-1-10.
FOSTER C, WU Y T, STAND L, et al. Czochralski growth and scintillation properties of Li+, Na+, and K+ codoped(Lu0.75, Y0.25)3Al5O12∶Pr3+ single crystals[J]. J. Cryst. Growth, 2020, 532: 125408-1-7.
SCHRÖDER F, FISCHER S, JÜSTEL T. X-ray and VUV excitation studies on Pr3+ activated Li2CaSiO4[J]. J. Lumin., 2021, 235: 118046-1-9.
CASTAING V, ARROYO E, BECERRO A I, et al. Persistent luminescent nanoparticles:challenges and opportunities for a shimmering future[J]. J. Appl. Phys., 2021, 130(8): 080902-1-16.
ZYCH A, DE LANGE M, DE MELLO DONEGÁ C, et al. Analysis of the radiative lifetime of Pr3+ d-f emission[J]. J. Appl. Phys., 2012, 112(1): 013536-1-12.
WU Y T, REN G H. Effects of Gd/Lu ratio on the luminescent properties of Pr3+ activated (Gd, Lu)3Ga3Al2O12[J]. ECS J. Solid State Sci. Technol., 2013, 2(3): R49-R55.
SREEBUNPENG K, CHEWPRADITKUL W, BABIN V, et al. Scintillation response of Y3Al5O12∶Pr3+ single crystal scintillators[J]. Radiat. Meas., 2013, 56: 94-97.
DROZDOWSKI W, BRYLEW K, WOJTOWICZ A J, et al. 33 000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12∶Pr scintillator crystals[J]. Opt. Mater. Express, 2014, 4(6): 1207-1212.
SREEBUNPENG K, CHEWPRADITKUL W, NIKL M. Intrinsic light yield and light loss coefficient of LuAG∶Pr under excitation with α-and γ-rays[J]. Key Eng. Mater., 2016, 675-676: 768-771.
NARGELAS S, DOSOVITSKIY G, KORZHIK M, et al. Role of inter- and intraconfigurational transitions of Pr3+ ion in nonequilibrium carrier relaxation in garnet-type scintillators[J]. Opt. Mater., 2021, 111: 110676-1-6.
KANG R, ZHANG S A, LIAN H W, et al. Research progress on design strategy and application of persistent luminescence nanotheranostics[J]. Chin. J. Lumin., 2020, 41(12): 1614-1626. (in Chinese)
YANG Y M, LI Z Y, ZHANG J Y, et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions[J]. Light Sci. Appl., 2018, 7(1): 88-1-11.
PUSTOVAROV V A, IVANOVSKIKH K V, KISELEV S A, et al. Testing performance of Pr3+-doped KLuP2O7 upon UV-, synchrotron X-ray and cathode-ray excitation[J]. Opt. Mater., 2020, 108: 110234-1-8.
KEIL J N, JENNEBOER H, JÜSTEL T. Temperature dependent luminescence of Pr3+ doped NaCaPO4[J]. J. Lumin., 2021, 238: 118307-1-7.
ZHOU W J, GU M, OU Y Y, et al. Concentration-driven selectivity of energy transfer channels and color tunability in Ba3La(PO4)3∶Tb3+, Sm3+ for warm white LEDs[J]. Inorg. Chem., 2017, 56(13): 7433-7442.
YU R J, MI NOH H, MOON B K, et al. Synthesis and luminescence properties of a novel red-emitting phosphor Ba3La-(PO4)3∶Eu3+ for solid-state lighting[J]. J. Alloys Compd., 2013, 576: 236-241.
HOU D J, LIANG H B, XIE M B, et al. Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3∶Tb3+(Ln=La, Gd) under VUV-UV excitation[J]. Opt. Express, 2011, 19(12): 11071-11083.
ZHANG C H, LIANG H B, ZHANG S, et al. Efficient sensitization of Eu3+ emission by Tb3+ in Ba3La(PO4)3 under VUV-UV excitation:energy transfer and tunable emission[J]. J. Phys. Chem. C, 2012, 116(30): 15932-15937.
SHI Q F, HUANG Y, IVANOVSKIKH K V, et al. Luminescence properties and host sensitization study of Ba3La(PO4)3∶Ce3+ with (V)UV and X-ray excitation[J]. J. Alloys Compd., 2020, 817: 152704-1-7.
LIU W G, ZHU Q, WANG X J, et al. Multi-color luminescence and thermal stability of eulytite-type Ba3La(PO4)3∶Ce3+, Mn2+ phosphors via gel-combustion[J]. J. Alloys Compd., 2019, 787: 495-502.
BARBIER J. Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3[J]. J. Solid State Chem., 1992, 101(2): 249-256.
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. A, 1976, 32(5): 751-767.
FEOFILOV S P, ZHOU Y, SEO H J, et al. Host sensitization of Gd3+ ions in yttrium and scandium borates and phosphates:application to quantum cutting[J]. Phys. Rev. B, 2006, 74(8): 085101-1-9.
CARRASCO I, BARTOSIEWICZ K, PICCINELLI F, et al. Structural effects and 5d→4f emission transition shifts induced by Y co-doping in Pr-doped K3Lu1-xYx(PO4)2[J]. J. Lumin., 2017, 189: 113-119.
Broadband Near Infrared Emission and Energy Transfer of Ca2TbHf2Al3O12∶Ce3+,Cr3+ Garnet Phosphor
Mechanoluminescent Properties of Mixed-anion Compounds: Ba2Gd(BO3)2Cl∶Ln
Color-tunable Luminescence and Temperature Sensing Behavior of Sr0.3Ca0.7MoO4∶Tb3+, Eu3+ Phosphor
Electroluminescent Performances of Solution-processed Phosphorescent Organic Light-emitting Diodes Based on Cascade Energy Transfer of Ternary Blends
Related Author
No data
Related Institution
College of Physics and Optoelectronics, Taiyuan University of Technology
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
Key Laboratory for Liquid-solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University
College of Materials and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University
State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University