浏览全部资源
扫码关注微信
1.东北林业大学 生物质材料科学与技术教育部重点实验室,黑龙江 哈尔滨 150040
2.东北林业大学 理学院,黑龙江 哈尔滨 150040
Published:2021-12,
Received:25 August 2021,
Revised:22 September 2021,
扫 描 看 全 文
Ya-hui DONG, Jia-ming YU, Shi-peng WANG, et al. Preparation and Optical Properties of β-NaGdF4∶Yb3+,Er3+/Cellulose Nanocrystalline Cholesteric Composite Films. [J]. Chinese Journal of Luminescence 42(12):1882-1890(2021)
Ya-hui DONG, Jia-ming YU, Shi-peng WANG, et al. Preparation and Optical Properties of β-NaGdF4∶Yb3+,Er3+/Cellulose Nanocrystalline Cholesteric Composite Films. [J]. Chinese Journal of Luminescence 42(12):1882-1890(2021) DOI: 10.37188/CJL.20210273.
以稀土氯化物为原料、油酸和十八烯为溶剂,采用溶剂热法合成粒径为4.4 nm的β-NaGdF
4
∶Yb
3+
Er
3+
上转换荧光纳米粒子,并将其分散于纤维素纳米晶(CNC)的悬浮液中,随后通过蒸发诱导自组装制备了β-NaGdF
4
∶Yb
3+
Er
3+
/CNC胆甾型复合膜。采用X射线衍射(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)和荧光光谱等分析手段对制备样品的结构、形貌和性能进行分析。结果表明,制备的NaGdF
4
∶Yb
3+
Er
3+
上转换荧光纳米粒子的形貌为球形,结构为纯六方相,有良好的分散性,其分散液在980 nm激光激发下发出肉眼可见的明亮绿光。与纳米纤维素溶液自组装后获得同时具有上转换发光和结构色的β-NaGdF
4
∶Yb
3+
Er
3+
/CNC胆甾型复合膜,少量β-NaGdF
4
∶Yb
3+
Er
3+
的引入不改变纳米纤维素膜的胆甾型液晶结构。此外,纳米纤维素膜作为一维光子晶体在一定程度上可实现对β-NaGdF
4
∶Yb
3+
Er
3+
荧光性能的调控,使其禁带边缘的荧光强度增强2.7倍。
β-NaGdF
4
∶Yb
3+
Er
3+
upconversion fluorescent nanoparticles with the particle size of 4.4 nm were synthesized by solvothermal method using rare earth chlorides as raw material and oleic acid and octadecene as solvent. And then β-NaGdF
4
∶Yb
3+
Er
3+
/CNC cholesteric composite films were prepared by evaporation-induced self-assembly of cellulose nanocrystalline(CNC) suspension with β-NaGdF
4
∶Yb
3+
Er
3+
nanocrystals. The structure
morphology and properties of the prepared samples were analyzed by X-ray diffraction(XRD)
transmission electron microscopy(TEM)
Fourier transform infrared spectroscopy(FT-IR) and fluorescence spectroscopy. The results show that the prepared NaGdF
4
∶Yb
3+
Er
3+
upconversion material with a spherical morphology has a pure hexagonal phase and good dispersivity. And the solution can emit the bright green light under the excitation of a 980 nm laser. β-NaGdF
4
∶Yb
3+
Er
3+
/CNC cholesteric composite films with both upconversion luminescence and structural colors were obtained after self-assembly with nanocellulose solution. The structure of the cholesteric liquid crystal of the nanocellulose was not changed with adding a small amount of β-NaGdF
4
∶Yb
3+
Er
3+
nanoparticles. Meanwhile
it was found that the assembled chiral film
as a one-dimensional photonic crystal
could regulate the optical properties of β-NaGdF
4
∶Yb
3+
Er
3+
to some extent
and the fluorescence intensity at the bandgap edge of the nanocellulose was enhanced by 2.7 times.
纤维素纳米晶自组装胆甾型液晶上转换荧光
cellulose nanocrystallineself assemblycholesteric liquid crystalupconversion fluorescence
ZHOU B, YAN L, HUANG J S, et al. NIR Ⅱ-responsive photon upconversion through energy migration in an ytterbium sublattice[J]. Nat. Photonics, 2020, 14(12):760-766.
BI J Q, WEI T, SHEN L H, et al. Tunable upconversion luminescence in new Ho3+/Yb3+ -doped SrBi4Ti4O15 photochromic ceramics for switching application[J]. J. Am. Ceram. Soc., 2021, 104(4):1785-1796.
HUANG J S, YAN L, LIU S B, et al. Dynamic control of orthogonal upconversion in migratory core-shell nanostructure toward information security[J]. Adv. Funct. Mater., 2021, 31(14):2009796-1-7.
YANG G L, KAZES M, RAANAN D, et al. Bright near-infrared to visible upconversion double quantum dots based on a type-Ⅱ/type-I heterostructure[J]. ACS Photonics, 2021, 8(7):1909-1916.
ZHOU B, HUANG J S, YAN L, et al. Probing energy migration through precise control of interfacial energy transfer in nanostructure[J]. Adv. Mater., 2019, 31(6):1806308-1-6.
XU J T, GULZAR A, YANG P P, et al. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs:mechanism,design and application for bioimaging[J]. Coord. Chem. Rev., 2019, 381:104-134.
LIU Y Z, LIANG S F, YUAN C R, et al. Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles[J]. Adv. Funct. Mater., 2021, 31(37):2103908-1-7.
DING M Y, DONG B, LU Y, et al. Energy manipulation in lanthanide-doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting[J]. Adv. Mater., 2020, 32(45):2002121-1-10.
WU Y F S, WU W. Combinations of superior inorganic phosphors for level-tunable information hiding and encoding[J]. Adv. Opt. Mater., 2021, 9(17):2100281.
LI M C, WU Q L, MOON R J, et al. Rheological aspects of cellulose nanomaterials:governing factors and emerging applications[J]. Adv. Mater., 2021, 33(21):2006052-1-38.
XU C L, HUANG C X, HUANG H H. Recent advances in structural color display of cellulose nanocrystal materials[J]. Appl. Mater. Today, 2021, 22:100912.
GUAN Q F, YANG H B, HAN Z M, et al. Sustainable cellulose-nanofiber-based hydrogels[J]. ACS Nano, 2021, 15(5):7889-7898.
HARON G A S, MAHMOOD H, NOH M H, et al. Ionic liquids as a sustainable platform for nanocellulose processing from bioresources:overview and current status[J]. ACS Sustainable Chem. Eng., 2021, 9(3):1008-1034.
LV P F, LU X M, WANG L, et al. Nanocellulose-based functional materials:from chiral photonics to soft actuator and energy storage[J]. Adv. Funct. Mater., 2021, doi: 10.1002/adfm.202104991http://doi.org/10.1002/adfm.202104991.
CHAGAS R, SILVA P E S, FERNANDES S N, et al. Playing the blues,the greens and the reds with cellulose-based structural colours[J]. Faraday Discuss., 2020, 223:247-260.
HUANG H Q, WANG X J, YU J C, et al. Liquid-behaviors-assisted fabrication of multidimensional birefringent materials from dynamic hybrid hydrogels[J]. ACS Nano, 2019, 13(4):3867-3874.
ZHANG Z L, DONG X, FAN Y N, et al. Chameleon-inspired variable coloration enabled by a highly flexible photonic cellulose film[J]. ACS Appl. Mater. Interfaces, 2020, 12(41):46710-46718.
TAO J W, ZOU C, JIANG H J, et al. Optically ambidextrous reflection and luminescence in self-organized left-handed chiral nematic cellulose nanocrystal films[J]. CCS Chem., 2021, 3(3):932-945.
YU H L, ZHAO B, GUO J B, et al. Stimuli-responsive circularly polarized luminescent films with tunable emission[J]. J. Mater. Chem. C, 2020, 8(4):1459-1465.
ZHENG H Z, LI W R, LI W, et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications[J]. Adv. Mater., 2018, 30(13):1705948-1-7.
PARKER R M, GUIDETTI G, WILLIAMS C A, et al. The self-assembly of cellulose nanocrystals:hierarchical design of visual appearance[J]. Adv. Mater., 2018, 30(19):1704477-1-13.
TAO J W, LI J Q, YU X, et al. Lateral gradient ambidextrous optical reflection in self-organized left-handed chiral nematic cellulose nanocrystals films[J]. Front. Bioeng. Biotechnol., 2021, 9:608965-1-8.
YANG X F, HAN J L, WANG Y F, et al. Photon-upconverting chiral liquid crystal:significantly amplified upconverted circularly polarized luminescence[J]. Chem. Sci., 2019, 10(1):172-178.
QU D, ZHENG H Z, JIANG H J, et al. Chiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized light[J]. Adv. Opt. Mater., 2019, 7(7):1801395-1-7.
CHEN R L, FENG D C, CHEN G J, et al. Re-printable chiral photonic paper with invisible patterns and tunable wettability[J]. Adv. Funct. Mater., 2021, 31(16):2009916-1-9.
ADSTEDT K, POPENOV E A, PIERCE K J, et al. Chiral cellulose nanocrystals with intercalated amorphous polysaccharides for controlled iridescence and enhanced mechanics[J]. Adv. Funct. Mater., 2020, 30(49):2003597-1-15.
XIONG R, YU S T, KANG S, et al. Integration of optical surface structures with chiral nanocellulose for enhanced chiroptical properties[J]. Adv. Mater., 2019, 32(2):1905600-1-7.
孟志鹏, 武素丽. 光子晶体对稀土上转换发光的调控[J]. 发光学报, 2020, 41(8):913-925.
MENG Z P, WU S L. Manipulating upconversion luminescence of rare earth by photonic crystals[J]. Chin. J. Lumin., 2020, 41(8):913-925. (in Chinese)
0
Views
159
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution