浏览全部资源
扫码关注微信
福建师范大学 物理与能源学院,福建 福州 350000
Published:01 September 2021,
Received:08 May 2021,
Revised:23 May 2021,
扫 描 看 全 文
Ji-dong LIN, Zhi-bing WANG, Rui-dan ZHANG, et al. Research Progresses in Preparation and Applications of CsPb
Ji-dong LIN, Zhi-bing WANG, Rui-dan ZHANG, et al. Research Progresses in Preparation and Applications of CsPb
近年来,全无机CsPb
X
3
(
X
=Cl
Br
I)钙钛矿量子点在光电领域取得了极大的进展,但在外界环境刺激下(如光、热以及潮湿空气)会变质分解失效,限制了它们的实际应用。通过将钙钛矿量子点原位生长在玻璃基质中,利用无机玻璃致密的网络结构实现对量子点的无缝包覆,将量子点与外界环境隔绝,从而可以有效地解决量子点的稳定性问题,使其在固态照明、背光显示与防伪等领域具有更加广阔的应用前景。本文综述了全无机CsPb
X
3
钙钛矿量子点玻璃的制备方法及其优异的特性,对近年来在各应用领域的进展进行了概述,以期为全无机CsPb
X
3
钙钛矿量子点荧光玻璃的发展应用提供思路和参考。
In recent years
all-inorganic CsPb
X
3
(
X
=Cl
Br
I) perovskite quantum dots have made great progresses in the optoelectronic field
but their practical applications are limited by deterioration and decomposition failure under the stimulation of external environment (such as light
heat and humid air). Through
in situ
growth of perovskite quantum dots inside the glass matrix
the quantum dots are seamlessly coated by the dense network structure of inorganic glass
and the quantum dots are isolated from the external environment. As a consequence
the stability of quantum dots can be effectively solved
which make them have a broader application prospect in the fields of solid-state lighting
liquid crystal display
anti-counterfeiting and so on. The preparation methods and excellent properties of all-inorganic CsPb
X
3
perovskite quantum dots-embedded glass are described
and the progresses in various application fields in recent years are summarized. This review could provide ideas and references for the development and application of all-inorganic CsPb
X
3
perovskite quantum dots fluorescent glass.
钙钛矿量子点玻璃原位生长稳定性照明与显示
perovskite quantum dotglassin-situ nucleation/growthstabilitylighting and display
PROTESESCU L, YAKUNINS , BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J].Nano Lett., 2015, 15(6):3692-3696.
AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J].J. Am. Chem. Soc., 2015, 137(32):10276-10281.
ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots:potential alternatives for display technology [J].ACS Nano, 2015, 9(4):4533-4542.
LI G R, TAN Z K, DI D W, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix [J].Nano Lett., 2015, 15(4):2640-2644.
KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells?Efficient CsPbBr3 cells [J].J. Phys. Chem. Lett., 2015, 6(13):2452-2456.
HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells [J].Nat. Photonics, 2014, 8(6):489-494.
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J].Adv. Funct. Mater., 2016, 26(15):2435-2445.
ZHANG X Y, BAI X, WU H, et al. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals [J].Angew. Chem. Int. Ed., 2018, 57(13):3337-3342.
PALAZON F, AKKERMAN Q A, PRATO M, et al. X-ray lithography on perovskite nanocrystals films:from patterning with anion-exchange reactions to enhanced stability in air and water [J].ACS Nano, 2016, 10(1):1224-1230.
ZHANG H H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging [J].Adv. Funct. Mater., 2017, 27(7):1604382-1-8.
YANG G L, FAN Q S, CHEN B K, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability [J].J. Mater. Chem. C, 2016, 4(48):11387-11391.
LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat [J].Angew. Chem. Int. Ed., 2017, 56(36):10696-10701.
HUANG S Q, LI Z C, LI L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene [J].J. Am. Chem. Soc., 2016, 138(18):5749-5752.
LI Z C, KONG L, HUANG S Q, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith [J].Angew. Chem. Int. Ed., 2017, 56(28):8134-8138.
SUN C, ZHANG Y, RUAN C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots [J].Adv. Mater., 2016, 28(45):10088-10094.
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposite(MP-PQDs) with high stability and wide color gamut used for backlight display [J].Angew. Chem. Int. Ed., 2016, 55(28):7924-7929.
WANG H C, BAO Z, TSAI H Y, et al. Perovskite quantum dots and their application in light-emitting diodes [J].Small, 2018, 14(1):1702433.
PATHAK S, SAKAI N, RIVAROLA F W R, et al. Perovskite crystals for tunable white light emission [J].Chem. Mater., 2015, 27(23):8066-8075.
PLANELLES-ARAGO J, JULIAN-LÓPEZ B, CORDONCILLO E, et al. Lanthanide doped ZnS quantum dots dispersed in silica glasses:an easy one pot sol-gel synthesis for obtaining novel photonic materials [J].J. Mater. Chem., 2008, 18(43):5193-5199.
KALE B B, BAEG J O, APTE S K, et al. Confinement of nano CdS in designated glass:a novel functionality of quantum dot-glass nanosystems in solar hydrogen production [J].J. Mater. Chem., 2007, 17(40):4297-4303.
GAPONENKO M S, LUTICH A A, TOLSTIK N A, et al. Temperature-dependent photoluminescence of PbS quantum dots in glass:evidence of exciton state splitting and carrier trapping [J].Phys. Rev. B, 2010, 82(12):125320-1-9.
AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses [J].J. Am. Ceram. Soc., 2016, 99(9):2875-2877.
CHEN D Q, YUAN S, CHEN J K, et al. Robust CsPbX3(X=Cl, Br, and I) perovskite quantum dot embedded glasses:nanocrystallization, improved stability and visible full-spectral tunable emissions [J].J. Mater. Chem. C, 2018, 6(47):12864-12870.
CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3(X=Cl, Br, I) perovskite quantum dots through fluorine doping [J].Nanoscale, 2019, 11(37):17216-17221.
LIN J D, LU Y X, LI X Y, et al. Perovskite quantum dots glasses based backlit displays [J].ACS Energy Lett., 2021, 6(2):519-528.
兰月梅, 王栋, 张国星, 等. 铯铅卤化物钙钛矿量子点从玻璃中析出的诱导因素[J].发光学报, 2021, 42(5):605-619.
LAN Y M, WANG D, ZHANG G D, et al. Inducing factors for precipitation of cesium lead halide perovskite quantum dots from glass [J].Chin. J. Lumin., 2021, 42(5):605-619. (in Chinese)
EROL E, KIBRISLI O, ERSUNDU M Ç, et al. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites [J].Chem. Eng. J., 2020, 401:126053.
LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs [J].Nanoscale, 2020, 12(12):6630-6636.
ZHANG X Z, GUO L Z, ZHANG Y H, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics [J].J. Am. Ceram. Soc., 2020, 103(9):5028-5035.
YUAN R R, SHEN L L, SHEN C Y, et al. CsPbBr3∶xEu3+ perovskite QD borosilicate glass:a new member of the luminescent material family [J].Chem. Commun., 2018, 54(27):3395-3398.
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display [J].Chem. Eng. J., 2020, 398:125616.
LI S S, NIE L J, MA S M, et al. Environmentally friendly CsPbBr3 QDs multicomponent glass with super-stability for optoelectronic devices and up-converted lasing [J].J. Eur. Ceram. Soc., 2020, 40(8):3270-3278.
HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium [J].Nat. Photonics, 2020, 14(2):82-88.
HUANG X J, GUO Q Y, KANG S L, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence [J].ACS Nano, 2020, 14(3):3150-3158.
WANG C Y, LIN H, XIANG X Q, et al. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry [J].J. Mater. Chem. C, 2018, 6(37):9964-9971.
HAO J J, ZHOU J, ZHANG C Y. A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core-shell CdSe-ZnS quantum dots with extremely high quantum yield [J].Chem. Commun., 2013, 49(56):6346-6348.
KIM Y, YASSITEPE E, VOZNYY O, et al. Efficient luminescence from perovskite quantum dot solids [J].ACS Appl. Mater. Interfaces, 2015, 7(45):25007-25013.
LEGUY A M A, HU Y H, CAMPOY-QUILES M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells [J].Chem. Mater., 2015, 27(9):3397-3407.
AKBALI B, TOPCU G, GUNER T, et al. CsPbBr3 perovskites:theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation [J].Phys. Rev. Mater., 2018, 2(3):034601.
TUREDI B, LEE K J, DURSUN I, et al. Water-induced dimensionality reduction in metal-halide perovskites [J].J. Phys. Chem. C, 2018, 122(25):14128-14134.
ARISTIDOU N, SANCHEZ-MOLINA I, CHOTCHUANGCHUTCHAVAL T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers [J].Angew. Chem. Int. Ed., 2015, 54(28):8208-8212.
TROTS D M, MYAGKOTA S V. High-temperature structural evolution of caesium and rubidium triiodoplumbates [J].J. Phys. Chem. Solids, 2008, 69(10):2520-2526.
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J].Adv. Energy Mater., 2015, 5(15):1500477-1-8.
BARKER A J, SADHANALA A, DESCHLER F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films [J].ACS Energy Lett., 2017, 2(6):1416-1424.
HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics [J].Chem. Sci., 2015, 6(1):613-617.
LV W Z, LI L, XU M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation [J].Adv. Mater., 2019, 31(28):1900682-1-28.
YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing [J].ACS Appl. Mater. Interfaces, 2018, 10(22):18918-18926.
DI X X, HU Z M, JIANG J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs [J].Chem. Commun., 2017, 53(80):11068-11071.
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs [J].ACS Appl. Mater. Interfaces, 2018, 10(25):21434-21444.
YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications [J].Adv. Opt. Mater., 2019, 7(9):1801663-1-11.
FANG M H, JRLEAÑO J L, LIU R S. Control of narrow-band emission in phosphor materials for application in light-emitting diodes [J].ACS Energy Lett., 2018, 3(10):2573-2586.
CHEN D Q, CHEN X. Luminescent perovskite quantum dots:synthesis, microstructures, optical properties and applications [J].J. Mater. Chem. C, 2019, 7(6):1413-1446.
PAN J, SARMAH S P, MURALI B, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single-and two-photon-induced amplified spontaneous emission [J].J. Phys. Chem. Lett., 2015, 6(24):5027-5033.
WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals [J].Nano Lett., 2016, 16(1):448-453.
XU Y Q, CHEN Q, ZHANG C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers [J].J. Am. Chem. Soc., 2016, 138(11):3761-3768.
TANG X S, YANG J, LI S Q, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties [J].Adv. Sci., 2019, 6(18):1900412-1-10.
ZOU W Q, VISSER C, MADURO J A, et al. Broadband dye-sensitized upconversion of near-infrared light [J].Nat. Photonics, 2012, 6(8):560-564.
WANG J X, MING T, JIN Z, et al. Photon energy upconversion through thermal radiation with the power efficiency reaching 16% [J].Nat. Commun., 2014, 5(1):5669-1-9.
LEE J, BISSO P W, SRINIVAS R L, et al. Universal process-inert encoding architecture for polymer microparticles [J].Nat. Mater., 2014, 13(5):524-529.
ZHOU B, SHI B Y, JIN D Y, et al. Controlling upconversion nanocrystals for emerging applications [J].Nat. Nanotechnol., 2015, 10(11):924-936.
WU M F, CONGREVE D N, WILSON M W B, et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals [J].Nat. Photonics, 2016, 10(1):31-34.
JALANI G, NACCACHE R, ROSENZWEIG D H, et al. Photocleavable hydrogel-coated upconverting nanoparticles:a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery [J].J. Am. Chem. Soc., 2016, 138(3):1078-1083.
KAKAVELAKIS G, PETRIDIS K, KYMAKIS E. Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells [J].J. Mater. Chem. A, 2017, 5(41):21604-21624.
LI J B, SHEN Y L, LIU Y C, et al. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite [J].ACS Appl. Mater. Interfaces, 2017, 9(22):19176-19183.
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J].Chem. Soc. Rev., 2009, 38(4):976-989.
YANG D M, MA P A, HOU Z Y, et al. Current advances in lanthanide ion(Ln3+)-based upconversion nanomaterials for drug delivery [J].Chem. Soc. Rev., 2015, 44(6):1416-1448.
DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion [J].Nat. Nanotechnol., 2015, 10(3):237-242.
CHEN G Y, AGREN H, OHULCHANSKYY T Y, et al. Light upconverting core-shell nanostructures:nanophotonic control for emerging applications [J].Chem. Soc. Rev., 2015, 44(6):1680-1713.
DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications [J].Chem. Soc. Rev., 2015, 44(6):1608-1634.
HOMANN C, KRUKEWITT L, FRENZEL F, et al. NaYF4∶Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield [J].Angew. Chem. Int. Ed., 2018, 57(28):8765-8769.
ZHOU B, YAN L, TAO L L, et al. Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer [J].Adv. Sci., 2018, 5(3):1700667-1-8.
WANG Y, ZHENG K Z, SONG S Y, et al. Remote manipulation of upconversion luminescence [J].Chem. Soc. Rev., 2018, 47(17):6473-6485.
YUAN Z, ZHANG L, LI S Z, et al. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly [J].J. Am. Chem. Soc., 2018, 140(45):15507-15515.
LIN J D, YANG C B, HUANG P, et al. Photoluminescence tuning from glass-stabilized CsPbX3(X=Cl, Br, I) perovskite nanocrystals triggered by upconverting Tm∶KYb2F7 nanoparticles for high-level anti-counterfeiting [J].Chem. Eng. J., 2020, 395:125214.
LI X Y, YANG C B, YU Y L, et al. Dual-modal photon upconverting and downshifting emissions from ultra-stable CsPbBr3 perovskite nanocrystals triggered by co-growth of Tm∶NaYbF4 nanocrystals in glass [J].ACS Appl. Mater. Interfaces, 2020, 12(16):18705-18714.
0
Views
396
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution