浏览全部资源
扫码关注微信
1.桂林电子科技大学 生命与环境科学学院,广西 桂林 541004
2.岭南师范学院 化学化工学院,广东 湛江 524048
Published:01 August 2021,
Received:06 May 2021,
Revised:09 June 2021,
扫 描 看 全 文
Hui-hui MAO, Zhi-hua ZHAN, Guo-hua ZHOU, et al. Advances in Application of Fluorescent Carbon Quantum Dots in Drug Analysis. [J]. Chinese Journal of Luminescence 42(8):1245-1256(2021)
Hui-hui MAO, Zhi-hua ZHAN, Guo-hua ZHOU, et al. Advances in Application of Fluorescent Carbon Quantum Dots in Drug Analysis. [J]. Chinese Journal of Luminescence 42(8):1245-1256(2021) DOI: 10.37188/CJL.20210168.
碳量子点(Carbon quantum dots
CQDs)作为一种新型的荧光碳纳米材料,具有原材料来源广泛、制备简单、易操作、灵敏度高、发光性能优异和易可视化等优势,近年来在药物分析和生物小分子检测方面极具应用潜力。本文主要综述了CQDs作为荧光传感器在部分抗菌药物、抗炎药物、抗肿瘤药物、多种维生素以及一些药物小分子方面的分析应用,并对CQDs在药物分析方面的发展进行了展望。
Carbon quantum dots(CQDs)
as a new type of fluorescent carbon nanomaterials
have the advantages of a wide range of raw materials
simple preparation
easy operation
high sensitivity
excellent luminescence performance and easy visualization. In recent years
they have been used in drug analysis and the detection of small biological molecules has great application potential. This article mainly reviews the analytical applications of CQDs as fluorescent sensors in some antibacterial drugs
anti-inflammatory drugs
anti-tumor drugs
multivitamins and some small drug molecules. And the development of CQDs in drug analysis is also prospected.
碳量子点药物分析荧光传感器综述
carbon quantum dotsdrug analysisfluorescence sensorreview
黄山鉴. 常用抗菌药物的给药时间及临床合理选择的研究进展[J].中国现代药物应用, 2020, 14(9): 236-238.
HUANG S J. Research progress on the administration time and clinical reasonable selection of commonly used antibacterial drugs [J].Chin. J. Mod. Drug Appl., 2020, 14(9): 236-238. (in Chinese)
孙搏, 李晓宇, 刘皋林. 非甾体抗炎药相关的药物性肝损伤的研究进展[J].世界华人消化杂志, 2015, 23(19): 3053-3059.
SUN B, LI X Y, LIU G L. Nonsteroidal antiinflammatory drug-induced liver injury [J].World Chin. J. Digestol., 2015, 23(19): 3053-3059. (in Chinese)
刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J].肿瘤综合治疗电子杂志, 2021, 7(2): 1-14.
LIU Z C, LI Z X, ZHANG Y, et al. Interpretation on the report of Global Cancer Statistics 2020 [J].J. Multidisciplinary Cancer Manage. (Electron. Vers.), 2021, 7(2): 1-14. (in Chinese)
张敏. 药物中有关物质检测方法研究进展及应用[J].广东化工, 2021, 48(4): 130.
ZHANG M. Research advance and application of detection methods for related substances in drugs [J].Guangdong Chem. Ind., 2021, 48(4): 130. (in Chinese)
CHU C X, HUANG R, WANG X F, et al. A turn-on fluorescent sensor based on copper-based metal-organic frameworks for sensitive detection of L-histidine [J].Nano, 2021, 16(2): 2150015.
YIN K P, WU S Q, ZHENG H, et al. Lanthanide metal-organic framework-based fluorescent sensor arrays to discriminate and quantify ingredients of natural medicine [J].Langmuir, 2021, 37(17): 5321-5328.
AYDIN D, DINCKAN S, ELMAS S N K, et al. A novel phenolphthalein-based fluorescent sensor for Al3+ sensing in drinking water and herbal tea samples [J].Food Chem., 2021, 337: 127659.
ERDEMIR S, MALKONDU S. Dual-channel responsive fluorescent sensor for the logic-controlled detection and bioimaging of Zn2+ and Hg2+ [J].J. Mol. Liq., 2021, 326: 115279.
SAYIN S. Synthesis of new quinoline-conjugated calixarene as a fluorescent sensor for selective determination of Cu2+ ion [J].J. Fluoresc., 2021, 31(4): 1143-1151.
WANG D Y, YIN Q, ZHENG M, et al. Fluorescent sensor based on triphenylamine for Zn2+ with high selectivity and imaging in living cells [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 251: 119480.
ZHANG W Z, LI R Y, LI P, et al. A novel pyridine-containing half-salamo-based “on-off-on” fluorescent sensor for continuous detecting Cu2+ and S2-, and its structural features of copper(Ⅱ) complex [J].Inorg. Chim. Acta, 2021, 521: 120344-1-9.
PRINCY K F, HOLADAY M G D, GOPINATH A. Marine macroalgae biofabricated silver nanoparticles as naked-eye colorimetric and turn-on fluorescent sensor for cyanide ions in aqueous media [J].Environ. Nanotechnol. Monit. Manag., 2021, 15: 100399.
ZHANG H, LIU P F, WANG H F, et al. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods [J].Anal. Bioanal. Chem., 2021, 413(6): 1541-1547.
EL-MALLA S F, ELSHENAWY E A, HAMMAD S F, et al. N-doped carbon dots as a fluorescent nanosensor for determination of colchicine based on inner filter effect [J].J. Fluoresc., 2021, 31(3): 675-684.
GHEREGHLOU M, ESMAEILI A A, DARROUDI M. Green synthesis of fluorescent carbon dots from Elaeagnus angustifolia and its application as tartrazine sensor [J].J. Fluoresc., 2021, 31(1): 185-193.
HE H, YANG Y N, LI J F, et al. Enhanced fluorescence of Zn-doped carbon quantum dots using zinc citrate chelate as precursor for fluorescent sensor applications [J].Mater. Sci. Eng. B, 2021, 264: 114955.
MITCHELL L, SHEN C, TIMMINS H C, et al. A versatile fluorescent sensor array for platinum anticancer drug detection in biological fluids [J].ACS Sens., 2021, 6(3): 1261-1269.
XU O W, WAN S Y, ZHANG Y H, et al. A unique dual-excitation carbon quantum dots: facile synthesis and application as a dual-“on-off-on” fluorescent probe [J].Sens. Actuators B: Chem., 2021, 340: 129904.
GUO Z C, LIU X R, YU H Y, et al. Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 257: 119774.
任岗. 碳量子点与药物相互作用的荧光猝灭效应及分析应用[D].延安: 延安大学, 2017.
REN G. Fluorescence Quenching Effect of Interaction between Carbon Quantum Dots and Drugs and Its Analytical Application [D].Yan'an: Yan'an University, 2017. (in Chinese)
PANG Y H, LV Z Y, SUN J C, et al. Collaborative compounding of metal-organic frameworks for dispersive solid-phase extraction HPLC-MS/MS determination of tetracyclines in honey [J].Food Chem., 2021, 355: 129411.
ZHANG Z T, FAN Z F. Application of cerium-nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging [J].Microchem. J., 2021, 165: 106139.
王颖怡. 荧光碳点的制备、表征及其在药物检测中的应用[D].重庆: 西南大学, 2019.
WANG Y Y. Synthesis, Characterization of Fluorescent Carbon Dots and Their Applications in Pharmaceutical Analysis [D].Chongqing: Southwest University, 2019. (in Chinese)
林敏. 磷、硫掺杂碳点的制备及其在药物分析与细胞成像中的应用研究[D].重庆: 西南大学, 2017.
LIN M. Studies on the Synthesis of Heteroatom-doped Carbon Dots and Their Applications in Pharmaceutical Analysis and Cellular Imaging [D].Chongqing: Southwest University, 2017. (in Chinese)
ZHAO N, WANG Y, HOU S S, et al. Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging [J].Mikrochim. Acta, 2020, 187(6): 351-1-10.
孙雪. 荧光碳量子点传感器的设计及其对药物检测的研究[D].哈尔滨: 东北林业大学, 2020.
SUN X. Design and Drug Analysis Based on Fluorescent Carbon Quantum Dots Sensor [D].Harbin: Northeast Forestry University, 2020. (in Chinese)
ZHANG Z W, CHEN J Q, DUAN Y, et al. Highly luminescent nitrogen-doped carbon dots for simultaneous determination of chlortetracycline and sulfasalazine [J].Luminescence, 2018, 33(2): 318-325.
ZHANG H F, ZHOU Q, HAN X, et al. Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 255: 119736.
李满秀, 宋志英, 任光明, 等. 氮磷共掺杂碳量子点“关-开”型荧光探针检测氨苄青霉素的研究[J].分析科学学报, 2021, 37(2): 199-204.
LI M X, SONG Z Y, REN G M, et al. Detection of ampicillin by switched fluorescence sensor with nitrogen-phosphorus co-doped fluorescent carbon dots [J].J. Anal. Sci., 2021, 37(2): 199-204. (in Chinese)
梁佳曼. 荧光碳量子点的合成及在药物分析中的应用研究[D].重庆: 西南大学, 2016.
LIANG J M. Study on the Synthesis of Carbon Quantum Dots and Its Application in Pharmaceutical Analysis [D].Chongqing: Southwest University, 2016. (in Chinese)
AL-HASHIMI B R, OMER K M, RAHMAN H S, et al. Inner filter effect as a sensitive sensing platform for detection of nitrofurantoin using luminescent drug-based carbon nanodots [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244: 118835.
FAN H Z, ZHANG M, BHANDARI B, et al. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection [J].Trends Food Sci. Tech., 2020, 95: 86-96.
BESSONE F, HERNANDEZ N, MENDIZABAL M, et al. Serious liver injury induced by Nimesulide: an international collaborative study [J].Arch. Toxicol., 2021, 95(4): 1475-1487.
SONG J P, LIANG X M, MA Q, et al. Fluorescent boron and nitrogen co-doped carbon dots with high quantum yield for the detection of nimesulide and fluorescence staining [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 216: 296-302.
吴青, 金星, 王忠霞, 等. 基于硼氮共掺杂荧光碳点定量分析吡罗昔康[J].盐城工学院学报(自然科学版), 2019, 32(4): 31-37.
WU Q, JIN X, WANG Z X, et al. Quantitative analysis of piroxicam based on boron and nitrogen co-doped fluorescent carbon dots [J].J. Yancheng Inst. Technol. (Nat. Sci. Ed.), 2019, 32(4): 31-37. (in Chinese)
王靖原. 碳量子点关开型荧光探针在药物分析中的应用研究[D].延安: 延安大学, 2019.
WANG J Y. Study on the Application of Carbon Quantum Dots “Off-On” Fluorescent Probes in Pharmaceuticals Analysis [D].Yan'an: Yan'an University, 2019. (in Chinese)
WANG C Y, SHANG S Z, ZHENG X D, et al. Fluorescent sensors based on cu-doped carbon quantum dots for the detection of rutin [J].J. Braz. Chem. Soc., 2019, 30(5): 988-996.
焦欣悦. 自然源碳点的合成及其在药物分析中的应用[D].武汉: 华中科技大学, 2018.
JIAO X Y. Synthesis of Carbon Dots from Natural Source and Their Applications in Pharmaceutical Analysis [D].Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
ZHANG Z W, LIU Y H, YAN Z Y, et al. Simultaneous determination of temperature and erlotinib by novel carbon-based sensitive nanoparticles [J].Sens. Actuators B: Chem., 2018, 255: 986-994.
胡军辉, 梁帆, 刘洋, 等. N掺杂荧光碳点对姜黄素的免标记检测及细胞成像[J].山西大学学报(自然科学版), 2021, 44(1): 107-116.
HU J H, LIANG F, LIU Y, et al. Label-free detection of curcumin and cell imaging by N-doped fluorescent carbon dots [J].J. Shanxi Univ. (Nat. Sci. Ed.), 2021, 44(1): 107-116. (in Chinese)
TANG X D, YU H M, BUI B, et al. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples [J].Bioact. Mater., 2021, 6(6): 1541-1554.
郁越, 李恒宇, 盛湲. 抗体偶联药物在乳腺癌治疗中的进展[J].世界临床药物, 2019, 40(3): 157-160.
YU Y, LI H Y, SHENG Y. Advances in antibody-drug conjugates in the treatment of breast cancer [J].World Clin. Drugs, 2019, 40(3): 157-160. (in Chinese)
葛瑞芬. 功能化树状大分子对药物的靶向传输以及肿瘤的光疗-化疗协同效果研究[D].青岛: 青岛大学, 2019.
GE R F. NIR-guided Dendritic Nanoplatform for Reducing the Recurrence of Tumors by Combining Chemo-Phototherapy [D].Qingdao: Qingdao University, 2019. (in Chinese)
汤朝晖, 陈学思. 聚谷氨酸接枝聚乙二醇抗肿瘤药物靶向输送系统[J].高分子学报, 2019, 50(6): 543-552.
TANG C H, CHEN X S. Tumor-targeting drug delivery systems based on poly(L-glutamic acid)-g-poly(ethylene glycol) [J].Acta Polym. Sinica, 2019, 50(6): 543-552. (in Chinese)
赵广阔、苏为科、帅棋. 新型多功能可生物降解PEG-PLA/PLGA/PCL聚合物纳米抗肿瘤药物载体的研究进展[J].中国现代应用药学, 2020, 37(18): 2291-2298.
ZHAO G K, SU W K, SHUAI Q. Research progress of novel multi-functional biodegradable PEG-PLA/PLGA/PCL polymeric nano-anticancer drug carriers [J].Chin. J. Mod. Appl. Pharm., 2020, 37(18): 2291-2298. (in Chinese)
张亚楠, 温海霞. 碳量子点在肿瘤治疗中的应用[J].中国医药导报, 2020, 17(13): 69-72.
ZHANG Y N, WEN H X. Application of carbon quantum dots in tumor therapy [J].China Med. Her., 2020, 17(13): 69-72. (in Chinese)
MONTE-FILHO S S, ANDRADE S I E, LIMA M B, et al. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements [J].J. Pharm. Anal., 2019, 9(3): 209-216.
QIAN J L, QUAN F F, ZHAO F J, et al. Aconitic acid derived carbon dots: conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells [J].Sens. Actuators B: Chem., 2018, 262: 444-451.
王靖原, 张越诚, 党珍珍, 等. 维生素B12与碳量子点相互作用的荧光猝灭效应及分析应用[J].分子科学学报, 2019, 35(2): 128-133.
WANG J Y, ZHANG Y C, DANG Z Z, et al. Fluorescence quenching effect of Vitamin B12 interaction with carbon quantum dots and its analytical application [J].J. Mol. Sci., 2019, 35(2): 128-133. (in Chinese)
胡军辉. 杂原子掺杂碳点的制备及其在药物分析中的应用[D].太原: 山西大学, 2020.
HU J H. Preparation of Heteroatom-doped Carbon Dots and Its Application In Pharmaceutical Analysis [D].Taiyuan: Shanxi University, 2020. (in Chinese)
ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect [J].ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247.
武文波, 张越诚, 李承佳, 等. 碳量子点/曙红Y比率型荧光探针测定L-抗坏血酸[J].发光学报, 2020, 41(3): 331-338.
WU W B, ZHANG Y C, LI C J, et al. Determination of L-ascorbic acid by carbon quantum dot/eosin Y ratiometric fluorescence probe [J].Chin. J. Lumin., 2020, 41(3): 331-338. (in Chinese)
LIN Y, CHEN Y, MO W Q, et al. An “on-off-on” fluorescent system based on the microwave-assisted preparation of copper-functionalized carbon quantum dots for sensitive detection of ascorbic acid [J].Opt. Mater., 2021, 115: 111041.
ZHANG Y H, FANG X, ZHAO H, et al. A highly sensitive and selective detection of Cr(Ⅵ) and ascorbic acid based on nitrogen-doped carbon dots [J].Talanta, 2018, 181: 318-325.
张越诚, 马红燕, 王靖原, 等. 基于糊精碳量子点荧光信号“关-开”测定L-抗坏血酸的研究[J].化学研究与应用, 2019, 31(4): 638-643.
ZHANG Y C, MA H Y, WANG J Y, et al. Sensitive detection of L-ascorbic acid based on “off-on” dextrin carbon quantum dots as fluorescent probe [J].Chem. Res. Appl., 2019, 31(4): 638-643. (in Chinese)
HE W J, GUI R J, JIN H, et al. Ratiometric fluorescence and visual imaging detection of dopamine based on carbon dots/copper nanoclusters dual-emitting nanohybrids [J].Talanta, 2018, 178: 109-115.
NAIK V, ZANTYE P, GUNJAL D, et al. Nitrogen-doped carbon dots via hydrothermal synthesis: naked eye fluorescent sensor for dopamine and used for multicolor cell imaging [J].ACS Appl. Bio Mater., 2019, 2(5): 2069-2077.
马红燕, 王靖原, 张越诚, 等. 以花生碳量子点为探针基于其荧光猝灭-恢复测定多巴胺的研究[J].光谱学与光谱分析, 2020, 40(4): 1093-1098.
MA H Y, WANG J Y, ZHANG Y C, et al. Determination of dopamine by fluorescence quenching-recovery method with peanut carbon quantum dots as probe [J].Spectrosc. Spectral Anal., 2020, 40(4): 1093-1098. (in Chinese)
李宏, 华建豪, 侯朝祥, 等. 锌掺杂碳量子点“关-开”型荧光探针检测果蔬中谷胱甘肽的研究[J].分析测试学报, 2019, 38(1): 52-57.
LI H, HUA J H, HOU C X, et al. Determination of glutathione in fruits and vegetables based on an “off-on” type fluorescent probe with zinc-doped carbon quantum dots [J].J. Instrumental Anal., 2019, 38(1): 52-57. (in Chinese)
0
Views
278
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution